Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23

forced convection Related Abstracts

23 Performance Evaluation of Extruded-type Heat sinks Used in Inverter for Solar Power Generation

Authors: Gyo Woo Lee, Jung Hyun Kim


In this study, heat release performances of the three extruded-type heat sinks can be used in the inverter for solar power generation were evaluated. Numbers of fins in the heat sinks (namely E-38, E-47 and E-76) were 38, 47 and 76, respectively. Heat transfer areas of them were 1.8, 1.9 and 2.8 m2. The heat release performances of E-38, E-47, and E-76 heat sinks were measured as 79.6, 81.6, and 83.2%, respectively. The results of heat release performance show that the larger amount of heat transfer area the higher heat release rate. While on the other, in this experiment, variations of the mass flow rates caused by different cross-sectional areas of the three heat sinks may not be the major parameter of the heat release. Despite the 47.4% increment of heat transfer area of E-76 heat sink than that of E-47 one, its heat release rate was higher by only 2.0%; this suggests that its heat transfer area need to be optimized.

Keywords: Heat Transfer, Performance Evaluation, solar Inverter, heat sink, forced convection

Procedia PDF Downloads 293
22 Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel

Authors: Huei Chu Weng


This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.

Keywords: Microfluidics, forced convection, thermal creep, second-order boundary conditions

Procedia PDF Downloads 182
21 Temperature Fields in a Channel Partially-Filled by Porous Material with Internal Heat Generations: On Exact Solution

Authors: Yasser Mahmoudi, Nader Karimi


The present work examines analytically the effect internal heat generation on temperature fields in a channel partially-filled with a porous under local thermal non-equilibrium condition. The Darcy-Brinkman model is used to represent the fluid transport through the porous material. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions for the solid and fluid temperature fields are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio Darcy number, as the non-dimensional energy terms in fluid and solid as parameters. Results show that considering any of the two models and under zero or negative heat generation (heat sink) and for any Darcy number, an increase in the porous thickness increases the amount of heat flux transferred to the porous region. The obtained results are applicable to the analysis of complex porous media incorporating internal heat generation, such as heat transfer enhancement (THE), tumor ablation in biological tissues and porous radiant burners (PRBs).

Keywords: Heat Transfer, Porous Media, forced convection, local thermal non-equilibrium, exact solution, internal heat generation

Procedia PDF Downloads 315
20 Effect of Flow Holes on Heat Release Performance of Extruded-Type Heat Sink

Authors: Gyo Woo Lee, Jung Hyun Kim


In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5°C by the holes.

Keywords: Heat Transfer, Performance Evaluation, heat sink, forced convection, flow holes

Procedia PDF Downloads 340
19 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: Khedidja Bouhadef, Azzedine Abdedou


The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: Fluid Mechanics, Porous Media, forced convection, oriented confined jet

Procedia PDF Downloads 233
18 Forced Convection Boundary Layer Flow of a Casson Fluid over a Moving Permeable Flat Plate beneath a Uniform Free Stream

Authors: N. Bachok, N. M. Arifin, F. M. Ali, R. Nazar, I. Pop, S. P. M. Isa


In this paper, the steady forced convection boundary layer flow of a Casson fluid past a moving permeable semi-infinite flat plate beneath a uniform free stream is investigated. The mathematical problem reduces to a pair of noncoupled ordinary differential equations by similarity transformation, which is then solved numerically using the shooting method. Both the cases when the plate moves into or out of the origin are considered. Effects of the non-Newtonian (Casson) parameter, moving parameter, suction or injection parameter and Eckert number on the flow and heat transfer characteristics are thoroughly examined. Dual solutions are found to exist for each value of the governing parameters.

Keywords: forced convection, boundary layer, Casson fluids, moving flat plate

Procedia PDF Downloads 307
17 CFD Studies on Forced Convection Nanofluid Flow Inside a Circular Conduit

Authors: W. Rashmi, M. Khalid, L. L. Kwan


This work provides an overview on the experimental and numerical simulations of various nanofluids and their flow and heat transfer behavior. It was further extended to study the effect of nanoparticle concentration, fluid flow rates and thermo-physical properties on the heat transfer enhancement of Al2O3/water nanofluid in a turbulent flow circular conduit using ANSYS FLUENT™ 14.0. Single-phase approximation (homogeneous model) and two-phase (mixture and Eulerian) models were used to simulate the nanofluid flow behavior in the 3-D horizontal pipe. The numerical results were further validated with experimental correlations reported in the literature. It was found that heat transfer of nanofluids increases with increasing particle volume concentration and Reynolds number, respectively. Results showed good agreement (~9% deviation) with the experimental correlations, especially for a single-phase model with constant properties. Among two-phase models, mixture model (~14% deviation) showed better prediction compared to Eulerian-dispersed model (~18% deviation) when temperature independent properties were used. Non-drag forces were also employed in the Eulerian two-phase model. However, the two-phase mixture model with temperature dependent nanofluid properties gave slightly closer agreement (~12% deviation).

Keywords: Heat Transfer, Nanofluid, CFD, forced convection, circular conduit

Procedia PDF Downloads 424
16 Numerical Study of Heat Release of the Symmetrically Arranged Extruded-Type Heat Sinks

Authors: Gyo Woo Lee, Man Young Kim


In this numerical study, we want to present the design of highly efficient extruded-type heat sink. The symmetrically arranged extruded-type heat sinks are used instead of a single extruded or swaged-type heat sink. In this parametric study, the maximum temperatures, the base temperatures between heaters, and the heat release rates were investigated with respect to the arrangements of heat sources, air flow rates, and amounts of heat input. Based on the results we believe that the use of both side of heat sink is to be much better for release the heat than the use of single side. Also from the results, it is believed that the symmetric arrangement of heat sources is recommended to achieve a higher heat transfer from the heat sink.

Keywords: Heat Transfer, Performance Evaluation, heat sink, forced convection, symmetrical arrangement

Procedia PDF Downloads 242
15 Emperical Correlation for Measurement of Thermal Diffusivity of Spherical Shaped Food Products under Forced Convection Environment

Authors: Abhishek Sharma, M. Riaz, Inamur Rehman


The present work is the development of an experimental method for determining the thermal diffusivity variations with temperature of selected regular shaped solid fruits and vegetables subjected to forced convection cooling. Experimental investigations were carried on the sample chosen (potato and brinjal), which is approximately of spherical geometry. The variation of temperature within the food product is measured at several locations from centre to skin, under forced convection environment using a deep freezer, maintained at -10°C.This method uses one dimensional Fourier equation applied to regular shapes. For this, the experimental temperature data obtained from cylindrical and spherical shaped products during pre-cooling was utilised. Such temperature and thermal diffusivity profiles can be readily used with other information such as degradation rate, etc. to evaluate thermal treatments based on cold air cooling methods for storage of perishable food products.

Keywords: Thermal Diffusivity, forced convection, skin temperature, precooling, regular shaped

Procedia PDF Downloads 337
14 Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis

Authors: Anuar Ishak


The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface.

Keywords: Heat Transfer, Nanofluid, Stability Analysis, forced convection, dual solutions

Procedia PDF Downloads 294
13 Thermal Analysis of a Channel Partially Filled with Porous Media Using Asymmetric Boundary Conditions and LTNE Model

Authors: Mohsen Torabi, Kaili Zhang


This work considers forced convection in a channel partially filled with porous media from local thermal non-equilibrium (LTNE) point of view. The channel is heated with constant heat flux from the lower side and is isolated on the top side. The wall heat flux is considered to be divided between the solid and fluid phases based on their temperature gradients and effective thermal conductivities. The general forms of the velocity and temperature fields are analytically obtained. To obtain the constant parameters for temperature equations, a numerical solution is considered. Using different thermophysical parameters, both velocity and temperature fields are comprehensively illustrated. Discussions regarding bifurcation phenomenon are provided. Since this geometry has not been considered yet, the present analysis is a useful addition to the literature on thermal performance of porous systems from LTNE perspective.

Keywords: forced convection, local thermal non-equilibrium, thermal bifurcation, porous-fluid interface, combined analytical-numerical solution

Procedia PDF Downloads 250
12 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator

Authors: S. Movafagh, Y. Bakhshan


In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.

Keywords: Nanofluid, forced convection, CFD simulation, radiator

Procedia PDF Downloads 198
11 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN

Authors: Ajoy Kumar Das, Prasenjit Dey


Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.

Keywords: Nanofluid, Neural Network, forced convection, square cylinder

Procedia PDF Downloads 195
10 Second-Order Slip Flow and Heat Transfer in a Long Isothermal Microchannel

Authors: Huei Chu Weng, Chien-Hung Liu


This paper presents a study on the effect of second-order slip and jump on forced convection through a long isothermally heated or cooled planar microchannel. The fully developed solutions of thermal flow fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and Smoluchowski jump boundary conditions. Results reveal that the second-order term in the Karniadakis slip boundary condition is found to contribute a negative velocity slip and then to lead to a higher pressure drop as well as a higher fluid temperature for the heated-wall case or to a lower fluid temperature for the cooled-wall case. These findings are contrary to predictions made by the Deissler model. In addition, the role of second-order slip becomes more significant when the Knudsen number increases.

Keywords: Microfluidics, forced convection, second-order boundary conditions, gas rarefaction

Procedia PDF Downloads 294
9 Heat Transfer and Entropy Generation in a Partial Porous Channel Using LTNE and Exothermicity/Endothermicity Features

Authors: Mohsen Torabi, Nader Karimi, Kaili Zhang


This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal non-equilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate data regarding temperature distribution within the system and accordingly to provide more accurate Nusselt number and entropy generation rates. Darcy-Brinkman model is used for the momentum equations, and constant heat flux is assumed for boundary conditions for both upper and lower surfaces. Analytical solutions have been provided for both velocity and temperature fields. By incorporating the investigated velocity and temperature formulas into the provided fundamental equations for the entropy generation, both local and total entropy generation rates are plotted for a number of cases. Bifurcation phenomena regarding temperature distribution and interface heat flux ratio are observed. It has been found that the exothermicity or endothermicity characteristic of the channel does have a considerable impact on the temperature fields and entropy generation rates.

Keywords: Analytical Modelling, forced convection, entropy generation, local thermal non-equilibrium, exothermicity or endothermicity

Procedia PDF Downloads 285
8 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow

Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani


Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200, in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.

Keywords: Heat Transfer, Nanofluid, cross-flow, forced convection, unsteady flow

Procedia PDF Downloads 236
7 Experimental Study of Heat Transfer Enhancement Using Protruded Rectangular Fin

Authors: Tarique Jamil Khan, Swapnil Pande


The investigation deals with the study of heat transfer enhancement using protruded square fin. This study is enough to determine whether protrusion in forced convection is enough to enhance the rate of heat transfer. It includes the results after performing experiments by using a plane rectangular fin of aluminum material and the same dimension rectangular fin of the same material but having protruded circular shape extended normally. The fins made by a sand casting method. The results clearly mentioned that the protruded surface is effective enough to enhance the rate of heat transfer. This research investigates a modern fin topologies heat transfer characteristics that will clearly outdated the conventional fin to increase the rate of heat transfer. Protruded fins improve the rate of heat transfer compared to solid fin by varying shape of the protrusion in diameter and height.

Keywords: Heat Transfer Enhancement, forced convection, protruted fin, rectangular fin

Procedia PDF Downloads 171
6 Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector

Authors: M. A. Alim, Salma Parvin


The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al2O3-waternanofluid, TiO2-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of m up to a certain range.

Keywords: Nanofluid, forced convection, mass flow rate, DASC

Procedia PDF Downloads 156
5 Heat Transfer Characteristics of Film Condensation

Authors: M. Mosaad, J. H. Almutairi, A. S. Almutairi


In this paper, saturated-vapour film condensation on a vertical wall with the backside cooled by forced convection is analyzed as a conjugate problem. In the analysis, the temperature and heat flux at the wall sides are assumed unknown and determined from the solution. The model is presented in a dimensionless form to take a broad view of the solution. The dimensionless variables controlling this coupled heat transfer process are discovered from the analysis. These variables explain the relative impact of the interactive heat transfer mechanisms of forced convection and film condensation. The study shows that the conjugate treatment of film condensation process yields results different from that predicted by a non-conjugate Nusselt-type solution, wherein the effect of the cooling fluid is neglected.

Keywords: Analytical Modelling, forced convection, film condensation, coupled heat transfer

Procedia PDF Downloads 183
4 Numerical Study of Heat Transfer Nanofluid TiO₂ through a Solar Flat Plate Collector

Authors: N. Zeraibi, S. Daoud, A. Maouassi, A. Beghidja


This paper illustrates a practical application of nanoparticles (TiO₂) as working fluid to stimulate solar flat plate collector efficiency with heat transfer modification properties. A numerical study of nanofluids laminar forced convection, permanent and stationary, is conducted in a solar flat plate collector. The effectiveness of these nanofluids are compared to conventional working fluid (water), wherein the dynamic and thermal properties are evaluated for four volume concentrations of nanoparticles (1%, 3%, 5% and 10%), and this done for Reynolds number from 25 to 800. Results from the application of those nonfluids are obtained versus pressure drop coefficient and Nusselt number are discussed later in this paper. Finally, we concluded that the heat transfer increases with increasing both nanoparticles concentration and Reynolds number.

Keywords: Nanofluid, CFD, forced convection, TiO2 nanoparticles, solar flat plate collector efficiency

Procedia PDF Downloads 58
3 CFD Modelling and Thermal Performance Analysis of Ventilated Double Skin Roof Structure

Authors: A. I. Ibrahim, A. O. Idris, J. Virgone, D. David, E. Vergnault


In hot countries, the major challenge is the air conditioning. The increase in energy consumption by air conditioning stems from the need to live in more comfortable buildings, which is understandable. But in Djibouti, one of the countries with the most expensive electricity in the world, this need is exacerbated by an architecture that is inappropriate and unsuitable for climatic conditions. This paper discusses the design of the roof which is the surface receiving the most solar radiation. The roof determines the general behavior of the building. The study presents Computational Fluid Dynamics (CFD) modeling and analysis of the energy performance of a double skin ventilated roof. The particularity of this study is that it considers the climate of Djibouti characterized by hot and humid conditions in winter and very hot and humid in summer. Roof simulations are carried out using the Ansys Fluent software to characterize the flow and the heat transfer induced in the ventilated roof in steady state. This modeling is carried out by comparing the influence of several parameters such as the internal emissivity of the upper surface, the thickness of the insulation of the roof and the thickness of the ventilated channel on heat gain through the roof. The energy saving potential compared to the current construction in Djibouti is also presented.

Keywords: Energy Saving, Building, CFD, natural convection, forced convection, double skin roof, thermo-fluid analysis

Procedia PDF Downloads 99
2 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition

Authors: Hamed Djalal


The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.

Keywords: pressure drop, forced convection, thermal hydraulic analysis, vertical heated rectangular channel

Procedia PDF Downloads 38
1 Determination of Forced Convection Heat Transfer Performance in Lattice Geometric Heat Sinks

Authors: Bayram Sahin, Murat Ceylan, Ibrahim Ates, Baris Gezdirici


In this experimental study, the effects of heat transfer and flow characteristics on lattice geometric heat sinks, where high rates of heat removal are required, were investigated. The design parameters were Reynolds number, the height of heat sink (H), horizontal (Sy) and vertical (Sx) distances between heat sinks. In the experiments, the Reynolds number ranged from 4000 to 20000; heat sink heights were (H) 20 mm and 40 mm; the distances (Sy) between the heat sinks in the flow direction were45 mm, 32 mm, 23.3 mm; the distances (Sx) between the heat sinks perpendicular to the flow direction were selected to be 23.3 mm, 12.5 mm and 6 mm. A total of 90 experiments were conducted and the maximum Nusselt number and minimum friction coefficient were targeted. Experimental results have shown that heat sinks in lattice geometry have a significant effect on heat transfer enhancement. Under the different experimental conditions, the highest increase in Nusselt number was 283% while the lowest increase was calculated as 66% as compared with the straight channel results. The lowest increase in the friction factor was also obtained as 173% according to the straight channel results. It is seen that the increase in heat sink height and flow velocity increased the level of turbulence in the channel, leading to higher Nusselt number and friction factor values.

Keywords: Heat Transfer Enhancement, pressure drop, forced convection, lattice geometric heat sinks

Procedia PDF Downloads 65