Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

FMEA Related Abstracts

9 Improving Efficiency and Effectiveness of FMEA Studies

Authors: Joshua Loiselle

Abstract:

This paper discusses the challenges engineering teams face in conducting Failure Modes and Effects Analysis (FMEA) studies. This paper focuses on the specific topic of improving the efficiency and effectiveness of FMEA studies. Modern economic needs and increased business competition require engineers to constantly develop newer and better solutions within shorter timeframes and tighter margins. In addition, documentation requirements for meeting standards/regulatory compliance and customer needs are becoming increasingly complex and verbose. Managing open actions and continuous improvement activities across all projects, product variations, and processes in addition to daily engineering tasks is cumbersome, time consuming, and is susceptible to errors, omissions, and non-conformances. FMEA studies are proven methods for improving products and processes while subsequently reducing engineering workload and improving machine and resource availability through a pre-emptive, systematic approach of identifying, analyzing, and improving high-risk components. If implemented correctly, FMEA studies significantly reduce costs and improve productivity. However, the value of an effective FMEA is often shrouded by a lack of clarity and structure, misconceptions, and previous experiences and, as such, FMEA studies are frequently grouped with the other required information and documented retrospectively in preparation of customer requirements or audits. Performing studies in this way only adds cost to a project and perpetuates the misnomer that FMEA studies are not value-added activities. This paper discusses the benefits of effective FMEA studies, the challenges related to conducting FMEA studies, best practices for efficiently overcoming challenges via structure and automation, and the benefits of implementing those practices.

Keywords: Quality, FMEA, APQP, PPAP

Procedia PDF Downloads 155
8 Developing Fuzzy Logic Model for Reliability Estimation: Case Study

Authors: Soroor K. H. Al-Khafaji, Manal Mohammad Abed

Abstract:

The research aim of this paper is to evaluate the reliability of a complex engineering system and to design a fuzzy model for the reliability estimation. The designed model has been applied on Vegetable Oil Purification System (neutralization system) to help the specialist user based on the concept of FMEA (Failure Mode and Effect Analysis) to estimate the reliability of the repairable system at the vegetable oil industry. The fuzzy model has been used to predict the system reliability for a future time period, depending on a historical database for the two past years. The model can help to specify the system malfunctions and to predict its reliability during a future period in more accurate and reasonable results compared with the results obtained by the traditional method of reliability estimation.

Keywords: Reliability, Fuzzy Logic, FMEA, repairable systems

Procedia PDF Downloads 474
7 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: ANOVA, FMEA, plastic injection moulding, quality optimization, SESME, APAP

Procedia PDF Downloads 239
6 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Agnieszka Misztal, Nadia Belu, Laurenţiu Mihai Ionescu

Abstract:

The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: Automotive industry, Automotive Technology, FMEA, control plan

Procedia PDF Downloads 277
5 Integration of FMEA and Human Factor in the Food Chain Risk Assessment

Authors: Mohsen Shirani, Micaela Demichela

Abstract:

During the last decades, a number of food crises such as Bovine Spongiform Encephalopathy (BSE), Mad-Cow disease, Dioxin in chicken food, Food-and-Mouth Disease (FMD), have certainly inflicted the reliability of the food industry. Consequently, the trend in applying different scientific methods of risk assessment in food safety has obtained more attentions in the academic and practice. However, lack of practical approach considering entire food supply chain is tangible in the academic literature. In this regard, this paper aims to apply risk assessment tool (FMEA) with integration of Human Factor along the entire supply chain of food production and test the method in a case study of Diary production, and analyze its results.

Keywords: Risk Assessment, Human Factor, Food Supply Chain, FMEA

Procedia PDF Downloads 204
4 Improving Productivity in a Glass Production Line through Applying Principles of Total Productive Maintenance (TPM)

Authors: Omar Bataineh

Abstract:

Total productive maintenance (TPM) is a principle-based method that aims to get a high-level production with no breakdowns, no slow running and no defects. Key principles of TPM were applied in this work to improve the performance of the glass production line at United Beverage Company in Kuwait, which is producing bottles of soft drinks. Principles such as 5S as a foundation for TPM implementation, developing a program for equipment management, Cause and Effect Analysis (CEA), quality improvement, training and education of employees were employed. After the completion of TPM implementation, it was possible to increase the Overall Equipment Effectiveness (OEE) from 23% to 40%.

Keywords: FMEA, TPM, OEE, CEA

Procedia PDF Downloads 227
3 A Process FMEA in Aero Fuel Pump Manufacturing and Conduct the Corrective Actions

Authors: Zohre Soleymani, Meisam Amirzadeh

Abstract:

Many products are safety critical, so proactive analysis techniques are vital for them because these techniques try to identify potential failures before the products are produced. Failure Mode and Effective Analysis (FMEA) is an effective tool in identifying probable problems of product or process and prioritizing them and planning for its elimination. The paper shows the implementation of FMEA process to identify and remove potential troubles of aero fuel pumps manufacturing process and improve the reliability of subsystems. So the different possible causes of failure and its effects along with the recommended actions are discussed. FMEA uses Risk Priority Number (RPN) to determine the risk level. RPN value is depending on Severity(S), Occurrence (O) and Detection (D) parameters, so these parameters need to be determined. After calculating the RPN for identified potential failure modes, the corrective actions are defined to reduce risk level according to assessment strategy and determined acceptable risk level. Then FMEA process is performed again and RPN revised is calculated. The represented results are applied in the format of a case study. These results show the improvement in manufacturing process and considerable reduction in aero fuel pump production risk level.

Keywords: FMEA, risk priority number, aero pump, corrective action

Procedia PDF Downloads 169
2 Critical Analysis of Heat Exchanger Cycle for its Maintainability Using Failure Modes and Effect Analysis and Pareto Analysis

Authors: Apurv Kulkarni, Shreyas Badave, B. Rajiv, Sayali Vyas, Atharva Desai

Abstract:

The Failure Modes and Effect Analysis (FMEA) is an efficient evaluation technique to identify potential failures in products, processes, and services. FMEA is designed to identify and prioritize failure modes. It proves to be a useful method for identifying and correcting possible failures at its earliest possible level so that one can avoid consequences of poor performance. In this paper, FMEA tool is used in detection of failures of various components of heat exchanger cycle and to identify critical failures of the components which may hamper the system’s performance. Further, a detailed Pareto analysis is done to find out the most critical components of the cycle, the causes of its failures, and possible recommended actions. This paper can be used as a checklist which will help in maintainability of the system.

Keywords: FMEA, Pareto analysis, heat exchanger cycle, Ishikawa diagram, RPN (Risk Priority Number)

Procedia PDF Downloads 250
1 Reliability and Maintainability Optimization for Aircraft’s Repairable Components Based on Cost Modeling Approach

Authors: Adel A. Ghobbar

Abstract:

The airline industry is continuously challenging how to safely increase the service life of the aircraft with limited maintenance budgets. Operators are looking for the most qualified maintenance providers of aircraft components, offering the finest customer service. Component owner and maintenance provider is offering an Abacus agreement (Aircraft Component Leasing) to increase the efficiency and productivity of the customer service. To increase the customer service, the current focus on No Fault Found (NFF) units must change into the focus on Early Failure (EF) units. Since the effect of EF units has a significant impact on customer satisfaction, this needs to increase the reliability of EF units at minimal cost, which leads to the goal of this paper. By identifying the reliability of early failure (EF) units with regards to No Fault Found (NFF) units, in particular, the root cause analysis with an integrated cost analysis of EF units with the use of a failure mode analysis tool and a cost model, there will be a set of EF maintenance improvements. The data used for the investigation of the EF units will be obtained from the Pentagon system, an Enterprise Resource Planning (ERP) system used by Fokker Services. The Pentagon system monitors components, which needs to be repaired from Fokker aircraft owners, Abacus exchange pool, and commercial customers. The data will be selected on several criteria’s: time span, failure rate, and cost driver. When the selected data has been acquired, the failure mode and root cause analysis of EF units are initiated. The failure analysis approach tool was implemented, resulting in the proposed failure solution of EF. This will lead to specific EF maintenance improvements, which can be set-up to decrease the EF units and, as a result of this, increasing the reliability. The investigated EFs, between the time period over ten years, showed to have a significant reliability impact of 32% on the total of 23339 unscheduled failures. Since the EFs encloses almost one-third of the entire population.

Keywords: Availability, predictive model, FMEA, supportability, no fault found, early failure, operational reliability

Procedia PDF Downloads 4