Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16

Finite elements Related Abstracts

16 A Comparative Study between Displacement and Strain Based Formulated Finite Elements Applied to the Analysis of Thin Shell Structures

Authors: Djamal Hamadi, Sifeddine Abderrahmani, Oussama Temami, Abdallah Zatar


The analysis and design of thin shell structures is a topic of interest in a variety of engineering applications. In structural mechanics problems the analyst seeks to determine the distribution of stresses throughout the structure to be designed. It is also necessary to calculate the displacements of certain points of the structure to ensure that specified allowable values are not exceeded. In this paper a comparative study between displacement and strain based finite elements applied to the analysis of some thin shell structures is presented. The results obtained from some examples show the efficiency and the performance of the strain based approach compared to the well known displacement formulation.

Keywords: Finite elements, Shell Structures, strain based approach, displacement formulation

Procedia PDF Downloads 230
15 Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis

Authors: Djamal Hamadi, Sifeddine Abderrahmani, Oussama Temami, Toufik Maalem


In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed.

Keywords: Finite elements, strain based approach, displacement fields, plate bending, Kirchhoff theory

Procedia PDF Downloads 160
14 Modeling of Complex Structures: Shear Wall with Openings and Stiffened Shells

Authors: Hamadi Djamal, Temami Oussama, Bessais Lakhdar, Abderrahmani Sifeddine


The analysis of complex structures encourages the engineer to make simplifying assumptions, sometimes attempting the analysis of the whole structure as complex as it is, and it can be done using the finite element method (FEM). In the modeling of complex structures by finite elements, various elements can be used: beam element, membrane element, solid element, plates and shells elements. These elements formulated according to the classical formulation and do not generally share the same nodal degrees of freedom, which complicates the development of a compatible model. The compatibility of the elements with each other is often a difficult problem for modeling complicated structure. This compatibility is necessary to ensure the convergence. To overcome this problem, we have proposed finite elements with a rotational degree of freedom. The study used is based on the strain approach formulation with 2D and 3D formulation with different degrees of freedom at each node. For the comparison and confrontation of results; the finite elements available in ABAQUS/Standard are used.

Keywords: Modeling, Complex structures, Finite elements, strain approach, compatibility requirement

Procedia PDF Downloads 248
13 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill

Authors: Jagdish Prasad Sahoo


The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.

Keywords: Active, reinforcement, Finite elements, Limit Analysis, presudo-static

Procedia PDF Downloads 231
12 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali


The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: Finite elements, cold formed steel 'CFS', shear wall panel, strip method

Procedia PDF Downloads 180
11 Study of the Stability of the Slope Open-Pit Mines: Case of the Mine of Phosphates – Tebessa, Algeria

Authors: Mohamed Fredj, Abdallah Hafsaoui, Radouane Nakache


The study of the stability of the mining works in rock masses fractured is the major concern of the operating engineer. For geotechnical works in mines and quarries, it there is not today's general methodology for analysis and the quantification of the risks relating to the dangers inherent in these concrete types (falling boulders, landslides, etc.). The reasons for this are uncertainty, which weighs on available data or lack of knowledge of the values of the parameters required for this analysis type. Stability calculations must be based on reliable knowledge of the distribution of discontinuities that dissect the Rocky massif and the resistance to shear of the intact rock and discontinuities. This study is aimed to study the stability of slope of mine (Kef Sennoun - Tebessa, Algeria). The problem is analyzed using a numerical model based on the finite elements (software Plaxis 3D).

Keywords: Stability, Finite elements, Rock Mass, discontinuities, open-pit mine

Procedia PDF Downloads 182
10 Finite Element Modeling for Clamping Stresses Developed in Hot-Driven Steel Structural Riveted Connections

Authors: Jackeline Kafie-Martinez, Peter B. Keating


A three-dimensional finite element model is developed to capture the stress field generated in connected plates during the installation of hot-driven rivets. Clamping stress is generated when a steel rivet heated to approximately 1000 °C comes in contact with the material to be fastened at ambient temperature. As the rivet cools, thermal contraction subjects the rivet into tensile stress, while the material being fastened is subjected to compressive stress. Model characteristics and assumptions, as well as steel properties variation with respect to temperature are discussed. The thermal stresses developed around the rivet hole are assessed and reported. Results from the analysis are utilized to detect possible regions for fatigue crack propagation under cyclic loads.

Keywords: Fatigue, Finite elements, RIVET, clamping stress, riveted railroad bridges

Procedia PDF Downloads 131
9 Modelling Asymmetric Magnetic Recording Heads with an Underlayer Using Superposition

Authors: Ammar Edress Mohamed, David Wright, Mustafa Aziz


This paper analyses and calculates the head fields of asymmetrical 2D magnetic recording heads when the soft-underlayer is present using the appropriate Green's function to derive the surface potential/field by utilising the surface potential for asymmetrical head without underlayer. The results follow closely the corners, while the gap region shows a linear behaviour for d/g < 0.5 compared with the calculated fields from finite-element.

Keywords: Magnetic recording, Finite elements, Superposition, asymmetrical magnetic heads, Laplace's equation

Procedia PDF Downloads 178
8 Quasi-Static Analysis of End Plate Beam-to-Column Connections

Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones


This paper presents a method for modelling and analysing end plate beam-to-column connections to obtain the quasi-static behaviour using non-linear dynamic explicit integration. In addition to its importance to study the static behaviour of a structural member, quasi-static behaviour is largely needed to be compared with the dynamic behaviour of such members in order to investigate the dynamic effect by proposing dynamic increase factors (DIFs). The beam-to-column bolted connections contain various contact surfaces at which the implicit procedure may have difficulties converging, resulting in a large number of iterations. Contrary, explicit procedure could deal effectively with complex contacts without converging problems. Hence, finite element modelling using ABAQUS/explicit is used in this study to address the dynamic effect may be produced using explicit procedure. Also, the effect of loading rate and mass scaling are discussed to investigate their effect on the time of analysis. The results show that the explicit procedure is valuable to model the end plate beam-to-column connections in terms of failure mode, load-displacement relationships. Also, it is concluded that loading rate and mass scaling should be carefully selected to avoid the dynamic effect in the solution.

Keywords: Connections, Finite elements, quasi-static, end plate

Procedia PDF Downloads 173
7 Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing

Authors: M. Volpini, D. Alves, A. Horta, M. Borges, P. Reis


The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.

Keywords: Finite elements, Orthoses, Additive Manufacture, new designs

Procedia PDF Downloads 61
6 Biomechanical Study of a Type II Superior Labral Anterior to Posterior Lesion in the Glenohumeral Joint Using Finite Element Analysis

Authors: Javier A. Maldonado E., Duvert A. Puentes T., Diego F. Villegas B.


The SLAP lesion (Superior Labral Anterior to Posterior) involves the labrum, causing pain and mobility problems in the glenohumeral joint. This injury is common in athletes practicing sports that requires throwing or those who receive traumatic impacts on the shoulder area. This paper determines the biomechanical behavior of soft tissues of the glenohumeral joint when type II SLAP lesion is present. This pathology is characterized for a tear in the superior labrum which is simulated in a 3D model of the shoulder joint. A 3D model of the glenohumeral joint was obtained using the free software Slice. Then, a Finite Element analysis was done using a general purpose software which simulates a compression test with external rotation. First, a validation was done assuming a healthy joint shoulder with a previous study. Once the initial model was validated, a lesion of the labrum built using a CAD software and the same test was done again. The results obtained were stress and strain distribution of the synovial capsule and the injured labrum. ANOVA was done for the healthy and injured glenohumeral joint finding significant differences between them. This study will help orthopedic surgeons to know the biomechanics involving this type of lesion and also the other surrounding structures affected by loading the injured joint.

Keywords: Biomechanics, Finite elements, glenohumeral joint, computational model, superior labral anterior to posterior lesion

Procedia PDF Downloads 46
5 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis

Authors: Javier A. Maldonado E., Duvert A. Puentes T., Ivan Quintero., Diego F. Villegas


Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.

Keywords: Biomechanics, Finite elements, glenohumeral joint, computational model, bankart lesion, labrum

Procedia PDF Downloads 28
4 Mechanical Properties and Thermal Comfort of 3D Printed Hand Orthosis for Neurorehabilitation

Authors: Mariana Volpini, Paulo H. R. G. Reis, Joana P. Maia, Davi Neiva Alves, Mariana R. C. Aquino, Igor B. Guimaraes, Anderson Horta, Thiago Santiago


Additive manufacturing is a manufacturing technique used in many fields as a tool for the production of complex parts accurately. This technique has a wide possibility of applications in bioengineering, mainly in the manufacture of orthopedic devices, thanks to the versatility of shapes and surface details. The present article aims to evaluate the mechanical viability of a wrist-hand orthosis made using additive manufacturing techniques with Nylon 12 polyamide and compare this device with the wrist-hand orthosis manufactured by the traditional process with thermoplastic Ezeform. The methodology used is based on the application of computational simulations of voltage and temperature, from finite element analysis, in order to evaluate the properties of displacement, mechanical stresses and thermal comfort in the two devices. The execution of this work was carried out through a case study with a 29-year-old male patient. The modeling software involved was Meshmixer from US manufacturer Autodesk and Fusion 360 from the same manufacturer. The results demonstrated that the orthosis developed by 3D printing, from Nylon 12, presents better thermal comfort and response to the mechanical stresses exerted on the orthosis.

Keywords: Neurorehabilitation, Thermal comfort, Additive manufacturing, Finite elements, hand orthosis

Procedia PDF Downloads 24
3 Seismic Bearing Capacity Estimation of Shallow Foundations on Dense Sand Underlain by Loose Sand Strata by Using Finite Elements Limit Analysis

Authors: Pragyan Paramita Das, Vishwas N. Khatri


By using the lower- and upper- bound finite elements to limit analysis in conjunction with second-order conic programming (SOCP), the effect of seismic forces on the bearing capacity of surface strip footing resting on dense sand underlain by loose sand deposit is explored. The soil is assumed to obey the Mohr-Coulomb’s yield criterion and an associated flow rule. The angle of internal friction (ϕ) of the top and the bottom layer is varied from 42° to 44° and 32° to 34° respectively. The coefficient of seismic acceleration is varied from 0 to 0.3. The variation of bearing capacity with different thickness of top layer for various seismic acceleration coefficients is generated. A comparison will be made with the available solutions from literature wherever applicable.

Keywords: Finite elements, bearing capacity, seismic forces, conic programming

Procedia PDF Downloads 6
2 Experimental and Numerical Investigation on Deformation Behaviour of Single Crystal Copper

Authors: Suman Paik, P. V. Durgaprasad, Bijan K. Dutta


A study combining experimental and numerical investigation on the deformation behaviour of single crystals of copper is presented in this paper. Cylindrical samples were cut in specific orientations from high purity copper single crystal and subjected to uniaxial compression loading at quasi-static strain rate. The stress-strain curves along two different crystallographic orientations were then extracted. In order to study and compare the deformation responses, a single crystal plasticity model incorporating non-Schmid effects was developed assuming cross-slip plays an important role in orientation of the material. By making use of crystal plasticity finite element method, the model was applied to investigate the orientation dependence of the stress-strain behaviour of two crystallographic orientations. Finally, details of slip activities of deformed crystals were investigated by linking the orientation of slip lines with the theoretical traces of possible crystallographic planes. The experimentally determined active slip modes were matched with those determined by simulations.

Keywords: Modelling, Finite elements, crystal plasticity, finite strain, non-Schmid effects

Procedia PDF Downloads 2
1 Structural Identification for Layered Composite Structures through a Wave and Finite Element Methodology

Authors: Rilwan Kayode Apalowo, Dimitrios Chronopoulos


An approach for identifying the geometric and material characteristics of layered composite structures through an inverse wave and finite element methodology is proposed. These characteristics are obtained through multi-frequency single shot measurements. However, it is established that the frequency regime of the measurements does not matter, meaning that both ultrasonic and structural dynamics frequency spectra can be employed. Taking advantage of a full FE (finite elements) description of the periodic composite, the scheme is able to account for arbitrarily complex structures. In order to demonstrate the robustness of the presented scheme, it is applied to a sandwich composite panel and results are compared with that of experimental characterization techniques. Excellent agreement is obtained with the experimental measurements.

Keywords: Ultrasound, Wave propagation, non-destructive evaluation, Finite elements, Structural Identification, layered structures

Procedia PDF Downloads 5