Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10

Extreme Value Theory Related Abstracts

10 An Application of Extreme Value Theory as a Risk Measurement Approach in Frontier Markets

Authors: Dany Ng Cheong Vee, Preethee Nunkoo Gonpot, Noor Sookia


In this paper, we consider the application of Extreme Value Theory as a risk measurement tool. The Value at Risk, for a set of indices, from six Stock Exchanges of Frontier markets is calculated using the Peaks over Threshold method and the performance of the model index-wise is evaluated using coverage tests and loss functions. Our results show that 'fat-tailedness' alone of the data is not enough to justify the use of EVT as a VaR approach. The structure of the returns dynamics is also a determining factor. This approach works fine in markets which have had extremes occurring in the past thus making the model capable of coping with extremes coming up (Colombo, Tunisia and Zagreb Stock Exchanges). On the other hand, we find that indices with lower past than present volatility fail to adequately deal with future extremes (Mauritius and Kazakhstan). We also conclude that using EVT alone produces quite static VaR figures not reflecting the actual dynamics of the data.

Keywords: Extreme Value Theory, financial crisis 2008, value at risk, frontier markets

Procedia PDF Downloads 160
9 Value at Risk and Expected Shortfall of Firms in the Main European Union Stock Market Indexes: A Detailed Analysis by Economic Sectors and Geographical Situation

Authors: Emma M. Iglesias


We have analyzed extreme movements of the main stocks traded in the Eurozone in the 2000-2012 period. Our results can help future very-risk-averse investors to choose their portfolios in the Eurozone for risk management purposes. We find two main results. First, we can clearly classify firms by economic sector according to their different estimated VaR values in five of the seven countries we analyze. In special, we find sectors in general where companies have very high (telecommunications and banking) and very low (petroleum, utilities, energy and consumption) estimated VaR values. Second, we only find differences according to the geographical situation of where the stocks are traded in two countries: (1) all firms in the Irish stock market (the only financially rescued country we analyze) have very high estimated VaR values in all sectors; while (2) in Spain all firms have very low estimated VaR values including in the banking and the telecommunications sectors. All our results are supported when we study also the expected shortfall of the firms.

Keywords: Risk management, Firms, Extreme Value Theory, eurozone, value-at-risk, pareto tail thickness parameter, GARCH-type models, heavy tails, stock indexes

Procedia PDF Downloads 248
8 Modelling Operational Risk Using Extreme Value Theory and Skew t-Copulas via Bayesian Inference

Authors: Betty Johanna Garzon Rozo, Jonathan Crook, Fernando Moreira


Operational risk losses are heavy tailed and are likely to be asymmetric and extremely dependent among business lines/event types. We propose a new methodology to assess, in a multivariate way, the asymmetry and extreme dependence between severity distributions, and to calculate the capital for Operational Risk. This methodology simultaneously uses (i) several parametric distributions and an alternative mix distribution (the Lognormal for the body of losses and the Generalized Pareto Distribution for the tail) via extreme value theory using SAS®, (ii) the multivariate skew t-copula applied for the first time for operational losses and (iii) Bayesian theory to estimate new n-dimensional skew t-copula models via Markov chain Monte Carlo (MCMC) simulation. This paper analyses a newly operational loss data set, SAS Global Operational Risk Data [SAS OpRisk], to model operational risk at international financial institutions. All the severity models are constructed in SAS® 9.2. We implement the procedure PROC SEVERITY and PROC NLMIXED. This paper focuses in describing this implementation.

Keywords: Copulas, operational risk, Extreme Value Theory, loss distribution approach

Procedia PDF Downloads 420
7 Extreme Value Modelling of Ghana Stock Exchange Indices

Authors: Kwabena Asare, Ezekiel N. N. Nortey, Felix O. Mettle


Modelling of extreme events has always been of interest in fields such as hydrology and meteorology. However, after the recent global financial crises, appropriate models for modelling of such rare events leading to these crises have become quite essential in the finance and risk management fields. This paper models the extreme values of the Ghana Stock Exchange All-Shares indices (2000-2010) by applying the Extreme Value Theory to fit a model to the tails of the daily stock returns data. A conditional approach of the EVT was preferred and hence an ARMA-GARCH model was fitted to the data to correct for the effects of autocorrelation and conditional heteroscedastic terms present in the returns series, before EVT method was applied. The Peak Over Threshold (POT) approach of the EVT, which fits a Generalized Pareto Distribution (GPD) model to excesses above a certain selected threshold, was employed. Maximum likelihood estimates of the model parameters were obtained and the model’s goodness of fit was assessed graphically using Q-Q, P-P and density plots. The findings indicate that the GPD provides an adequate fit to the data of excesses. The size of the extreme daily Ghanaian stock market movements were then computed using the Value at Risk (VaR) and Expected Shortfall (ES) risk measures at some high quantiles, based on the fitted GPD model.

Keywords: Extreme Value Theory, value at risk, expected shortfall, generalized pareto distribution‎, peak over threshold

Procedia PDF Downloads 357
6 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)

Authors: Longqing Li


The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.

Keywords: Extreme Value Theory, value-at-risk, conditional EVT, backtesting

Procedia PDF Downloads 187
5 An Extension of the Generalized Extreme Value Distribution

Authors: Serge Provost, Abdous Saboor


A q-analogue of the generalized extreme value distribution which includes the Gumbel distribution is introduced. The additional parameter q allows for increased modeling flexibility. The resulting distribution can have a finite, semi-infinite or infinite support. It can also produce several types of hazard rate functions. The model parameters are determined by making use of the method of maximum likelihood. It will be shown that it compares favourably to three related distributions in connection with the modeling of a certain hydrological data set.

Keywords: Extreme Value Theory, Gumbel distribution, generalized extreme value distribution, goodness-of-fit statistics

Procedia PDF Downloads 169
4 Extreme Value Theory Applied in Reliability Analysis: Case Study of Diesel Generator Fans

Authors: Jelena Vucicevic


Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. In this paper, the results for the reliability of diesel generator fans were calculated through Extreme Value Theory. The Extreme Value Theory is not widely used in the engineering field. Its usage is well known in other areas such as hydrology, meteorology, finance. The significance of this theory is in the fact that unlike the other statistical methods it is focused on rare and extreme values, and not on average. It should be noted that this theory is not designed exclusively for extreme events, but for extreme values in any event. Therefore, this is a great opportunity to apply the theory and test if it could be applied in this situation. The significance of the work is the calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know the time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. The results achieved in this method will show the approximation of time for which the fans will work as they should, and the percentage of probability of fans working more than certain estimated time. Extreme Value Theory can be applied not only for rare and extreme events, but for any event that has values which we can consider as extreme.

Keywords: Statistic, Reliability Analysis, Extreme Value Theory, time to failure, lifetime

Procedia PDF Downloads 198
3 Contagion of the Global Financial Crisis and Its Impact on Systemic Risk in the Banking System: Extreme Value Theory Analysis in Six Emerging Asia Economies

Authors: Ratna Kuswardani


This paper aims to study the impact of recent Global Financial Crisis (GFC) on 6 selected emerging Asian economies (Indonesia, Malaysia, Thailand, Philippines, Singapore, and South Korea). We first figure out the contagion of GFC from the US and Europe to the selected emerging Asian countries by studying the tail dependence of market stock returns between those countries. We apply the concept of Extreme Value Theory (EVT) to model the dependence between multiple returns series of variables under examination. We explore the factors causing the contagion between the regions. We find dependencies between markets that are influenced by their size, especially for large markets in emerging Asian countries that tend to have a higher dependency to the market in the more advanced country such as the U.S. and some countries in Europe. The results also suggest that the dependencies between market returns and bank stock returns in the same region tend to be higher than dependencies between these returns across two different regions. We extend our analysis by studying the impact of GFC on the systemic in the banking system. We also find that larger institution has more dependencies with the market stock, suggesting that larger size bank can cause disruption in the market. Further, the higher probability of extreme loss can be seen during the crisis period, which is shown by the non-linear dependency between the pre-crisis and the post-crisis period. Finally, our analysis suggests that systemic risk appears in the domestic banking systems in emerging Asia, as shown by the extreme dependencies within banks in the system. Overall, our results provide caution to policy makers and investors alike on the possible contagion of the impact of global financial crisis across different markets.

Keywords: Global Financial Crisis, Systemic Risk, Extreme Value Theory, contagion

Procedia PDF Downloads 21
2 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda

Authors: Emmanuel Iyamuremye


Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.

Keywords: Extreme Value Theory, generalized pareto distribution‎, exceedances, Poisson generalized Pareto distribution

Procedia PDF Downloads 1
1 Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis

Authors: Emmanuel Iyamuremye, Edouard Singirankabo, Alexis Habineza, Yunvirusaba Nelson


Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels.

Keywords: Climate Change, Global Warming, temperature, Extreme Value Theory, Rwanda, generalised extreme value distribution, generalised pareto distribution

Procedia PDF Downloads 1