Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22

Electric Vehicles Related Abstracts

22 A Joint Possibilistic-Probabilistic Tool for Load Flow Uncertainty Assessment-Part II: Case Studies

Authors: Mahmud Fotuhi-Firuzabad, Morteza Aien, Masoud Rashidinejad

Abstract:

Power systems are innately uncertain systems. To face with such uncertain systems, robust uncertainty assessment tools are appealed. This paper inspects the uncertainty assessment formulation of the load flow (LF) problem considering different kinds of uncertainties, developed in its companion paper through some case studies. The proposed methodology is based on the evidence theory and joint propagation of possibilistic and probabilistic uncertainties. The load and wind power generation are considered as probabilistic uncertain variables and the electric vehicles (EVs) and gas turbine distributed generation (DG) units are considered as possibilistic uncertain variables. The cumulative distribution function (CDF) of the system output parameters obtained by the pure probabilistic method lies within the belief and plausibility functions obtained by the joint propagation approach. Furthermore, the imprecision in the DG parameters is explicitly reflected by the gap between the belief and plausibility functions. This gap, due to the epistemic uncertainty on the DG resources parameters grows as the penetration level increases.

Keywords: Electric Vehicles, uncertain load flow, wind turbine generator, joint possibilistic- probabilistic uncertainty modeling

Procedia PDF Downloads 301
21 A Novel Design Methodology for a 1.5 KW DC/DC Converter in EV and Hybrid EV Applications

Authors: Farhan Beg

Abstract:

This paper presents a method for the efficient implementation of a unidirectional or bidirectional DC/DC converter. The DC/DC converter is used essentially for energy exchange between the low voltage service battery and a high voltage battery commonly found in Electric Vehicle applications. In these applications, apart from cost, efficiency of design is an important characteristic. A useful way to reduce the size of electronic equipment in the electric vehicles is proposed in this paper. The technique simplifies the mechanical complexity and maximizes the energy usage using the latest converter control techniques. Moreover a bidirectional battery charger for hybrid electric vehicles is also implemented in this paper. Several simulations on the test system have been carried out in Matlab/Simulink environment. The results exemplify the robustness of the proposed design methodology in case of a 1.5 KW DC-DC converter.

Keywords: Power Electronics, Electric Vehicles, DC-DC converters, direct current control

Procedia PDF Downloads 252
20 Advanced Simulation of Power Consumption of Electric Vehicles

Authors: Ilya Kavalchuk, Hayrettin Arisoy, Alex Stojcevski, Aman Maun Than Oo

Abstract:

Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles.

Keywords: Simulation, Electric Vehicles, Power management, Power Consumption

Procedia PDF Downloads 364
19 Transition Pathways of Commercial-Urban Fleet Electrification

Authors: Emily Gould, Walter Wehremeyer, David Greaves, Rodney Turtle

Abstract:

This paper considers current thinking on the pathway for electric vehicles, identifying the development blocks of alternative innovation within the market and analyse technological lock-in. The relationship between transition pathways and technological lock-in is largely under-researched particularly in the field of e-mobility. This paper is based on a study with three commercial-urban fleets that examines strategic decisions in new technology adaption alongside vehicle procurement and driver perspective. The paper will analyse the fleet’s decision matrix upon electric vehicles and seek to understand the influence of company culture, strategy and technology applicability, within the context of transition pathways.

Keywords: Electric Vehicles, Fleets, path dependencies, transition pathways

Procedia PDF Downloads 418
18 Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles

Authors: R. Mkahl, A. Nait-Sidi-Moh, M. Wack

Abstract:

Batteries of electric vehicles (BEV) are becoming more attractive with the advancement of new battery technologies and promotion of electric vehicles. BEV batteries are recharged on board vehicles using either the grid (G2V for Grid to Vehicle) or renewable energies in a stand-alone application (H2V for Home to Vehicle). This paper deals with the modeling, sizing and control of a photo voltaic stand-alone application that can charge the BEV at home. The modeling approach and developed mathematical models describing the system components are detailed. Simulation and experimental results are presented and commented.

Keywords: Modeling, Simulation, Electric Vehicles, Photovoltaic Energy, lead-acid batteries, charging process, experimental tests

Procedia PDF Downloads 276
17 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

Authors: Ahmet Yigit Arabul, Fatma Keskin Arabul, Ibrahim Senol, Ali Rifat Boynuegri

Abstract:

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

Keywords: Energy Management, Electric Vehicles, Fuel Cell, Battery, regenerative braking

Procedia PDF Downloads 521
16 Design and Control Algorithms for Power Electronic Converters for EV Applications

Authors: Ilya Kavalchuk, Alex Stojcevski, Mehdi Seyedmahmoudian, Ben Horan, Aman Than Oo

Abstract:

The power electronic components within Electric Vehicles (EV) need to operate in several important modes. Some modes directly influence safety, while others influence vehicle performance. Given the variety of functions and operational modes required of the power electronics, it needs to meet efficiency requirements to minimize power losses. Another challenge in the control and construction of such systems is the ability to support bidirectional power flow. This paper considers the construction, operation, and feasibility of available converters for electric vehicles with feasible configurations of electrical buses and loads. This paper describes logic and control signals for the converters for different operations conditions based on the efficiency and energy usage bases.

Keywords: Power Electronics, Electric Vehicles, electrical machines control, powerflow regulations

Procedia PDF Downloads 382
15 A Strategic Sustainability Analysis of Electric Vehicles in EU Today and Towards 2050

Authors: Sven Borén, Henrik Ny

Abstract:

Ambitions within the EU for moving towards sustainable transport include major emission reductions for fossil fuel road vehicles, especially for buses, trucks, and cars. The electric driveline seems to be an attractive solution for such development. This study first applied the Framework for Strategic Sustainable Development to compare sustainability effects of today’s fossil fuel vehicles with electric vehicles that have batteries or hydrogen fuel cells. The study then addressed a scenario were electric vehicles might be in majority in Europe by 2050. The methodology called Strategic Lifecycle Assessment was first used, were each life cycle phase was assessed for violations against sustainability principles. This indicates where further analysis could be done in order to quantify the magnitude of each violation, and later to create alternative strategies and actions that lead towards sustainability. A Life Cycle Assessment of combustion engine cars, plug-in hybrid cars, battery electric cars and hydrogen fuel cell cars was then conducted to compare and quantify environmental impacts. The authors found major violations of sustainability principles like use of fossil fuels, which contribute to the increase of emission related impacts such as climate change, acidification, eutrophication, ozone depletion, and particulate matters. Other violations were found, such as use of scarce materials for batteries and fuel cells, and also for most life cycle phases for all vehicles when using fossil fuel vehicles for mining, production and transport. Still, the studied current battery and hydrogen fuel cell cars have less severe violations than fossil fuel cars. The life cycle assessment revealed that fossil fuel cars have overall considerably higher environmental impacts compared to electric cars as long as the latter are powered by renewable electricity. By 2050, there will likely be even more sustainable alternatives than the studied electric vehicles when the EU electricity mix mainly should stem from renewable sources, batteries should be recycled, fuel cells should be a mature technology for use in vehicles (containing no scarce materials), and electric drivelines should have replaced combustion engines in other sectors. An uncertainty for fuel cells in 2050 is whether the production of hydrogen will have had time to switch to renewable resources. If so, that would contribute even more to a sustainable development. Except for being adopted in the GreenCharge roadmap, the authors suggest that the results can contribute to planning in the upcoming decades for a sustainable increase of EVs in Europe, and potentially serve as an inspiration for other smaller or larger regions. Further studies could map the environmental effects in LCA further, and include other road vehicles to get a more precise perception of how much they could affect sustainable development.

Keywords: Electric Vehicles, Sustainability, Strategic, LCA

Procedia PDF Downloads 218
14 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility

Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva

Abstract:

The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.

Keywords: Electric Vehicles, Life Cycle Assessment, Electrical Energy Storage, Power-to-Gas

Procedia PDF Downloads 57
13 Optimal Energy Management System for Electrical Vehicles to Further Extend the Range

Authors: M. R. Rouhi, S. Shafiei, A. Taghavipour, H. Adibi-Asl, A. Doosthoseini

Abstract:

This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule.

Keywords: Electric Vehicles, Battery, Model Predictive Control, ultra-capacitor

Procedia PDF Downloads 137
12 Electric Vehicle Market Penetration Impact on Greenhouse Gas Emissions for Policy-Making: A Case Study of United Arab Emirates

Authors: Ahmed Kiani

Abstract:

The United Arab Emirates is clearly facing a multitude of challenges in curbing its greenhouse gas emissions to meet its pre-allotted framework of Kyoto protocol and COP21 targets due to its hunger for modernization, industrialization, infrastructure growth, soaring population and oil and gas activity. In this work, we focus on the bonafide zero emission electric vehicles market penetration in the country’s transport industry for emission reduction. We study the global electric vehicle market trends, the complementary battery technologies and the trends by manufacturers, emission standards across borders and prioritized advancements which will ultimately dictate the terms of future conditions for the United Arab Emirate transport industry. Based on our findings and analysis at every stage of current viability and state-of-transport-affairs, we postulate policy recommendations to local governmental entities from a supply and demand perspective covering aspects of technology, infrastructure requirements, change in power dynamics, end user incentives program, market regulators behavior and communications amongst key stakeholders. 

Keywords: Electric Vehicles, Market analysis, policy recommendations, greenhouse gas emission reductions

Procedia PDF Downloads 192
11 Sizing of Hybrid Source Battery/Supercapacitor for Automotive Applications

Authors: Laid Degaa, Bachir Bendjedia, Nassim Rizoug, Abdelkader Saidane

Abstract:

Energy storage system is a key aspect for the development of clean cars. The work proposed here deals with the modeling of hybrid storage sources composed of a combination of lithium-ion battery and supercapacitors. Simulation results show the performance of the active model for a hybrid source and confirm the feasibility of our approach. In this context, sizing of the electrical energy supply is carried out. The aim of this sizing is to propose an 'optimal' solution that improves the performance of electric vehicles in term of weight, cost and aging.

Keywords: Energy, Electric Vehicles, Battery, supercapacitor, hybrid storage

Procedia PDF Downloads 206
10 Modelling Social Influence and Cultural Variation in Global Low-Carbon Vehicle Transitions

Authors: Hazel Pettifor, Charlie Wilson, David Mccollum, Oreane Edelenbosch

Abstract:

Vehicle purchase is a technology adoption decision that will strongly influence future energy and emission outcomes. Global integrated assessment models (IAMs) provide valuable insights into the medium and long terms effects of socio-economic development, technological change and climate policy. In this paper we present a unique and transparent approach for improving the behavioural representation of these models by incorporating social influence effects to more accurately represent consumer choice. This work draws together strong conceptual thinking and robust empirical evidence to introduce heterogeneous and interconnected consumers who vary in their aversion to new technologies. Focussing on vehicle choice, we conduct novel empirical research to parameterise consumer risk aversion and how this is shaped by social and cultural influences. We find robust evidence for social influence effects, and variation between countries as a function of cultural differences. We then formulate an approach to modelling social influence which is implementable in both simulation and optimisation-type models. We use two global integrated assessment models (IMAGE and MESSAGE) to analyse four scenarios that introduce social influence and cultural differences between regions. These scenarios allow us to explore the interactions between consumer preferences and social influence. We find that incorporating social influence effects into global models accelerates the early deployment of electric vehicles and stimulates more widespread deployment across adopter groups. Incorporating cultural variation leads to significant differences in deployment between culturally divergent regions such as the USA and China. Our analysis significantly extends the ability of global integrated assessment models to provide policy-relevant analysis grounded in real-world processes.

Keywords: Electric Vehicles, Social influence, behavioural realism, vehicle choice

Procedia PDF Downloads 61
9 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: Electric Vehicles, Hybrid Electric Vehicles, Lithium Ion Batteries, thermal management system

Procedia PDF Downloads 42
8 Energy Benefits of Urban Platooning with Self-Driving Vehicles

Authors: Eduardo F. Mello, Peter H. Bauer

Abstract:

The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.

Keywords: Optimization, Electric Vehicles, Energy Efficiency, Urban Traffic, platooning, self-driving vehicles

Procedia PDF Downloads 26
7 The Impact of Public Charging Infrastructure on the Adoption of Electric Vehicles

Authors: Shaherah Jordan, Paula Vandergert

Abstract:

The discussion on public charging infrastructure is usually framed around the ‘chicken-egg’ challenge of consumers feeling reluctant to purchase without the necessary infrastructure and policymakers reluctant to invest in the infrastructure without the demand. However, public charging infrastructure may be more crucial to electric vehicle (EV) adoption than previously thought. Historically, access to residential charging was thought to be a major factor in potential for growth in the EV market as it offered a guaranteed place for a vehicle to be charged. The purpose of this study is to understand how the built environment may encourage uptake of EVs by seeking a correlation between EV ownership and public charging points in an urban and densely populated city such as London. Using a statistical approach with data from the Department for Transport and Zap-Map, a statistically significant correlation was found between the total (slow, fast and rapid) number of public charging points and a number of EV registrations per borough – with the strongest correlation found between EV registrations and rapid chargers. This research does not explicitly prove that there is a cause and effect relationship between public charging points EVs but challenges some of the previous literature which indicates that public charging infrastructure is not as important as home charging. Furthermore, the study provides strong evidence that public charging points play a functional and psychological role in the adoption of EVs and supports the notion that the built environment can influence human behaviour.

Keywords: Transportation, Electric Vehicles, Behaviour Change, public charging infrastructure

Procedia PDF Downloads 67
6 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application

Authors: Sadeep Sasidharan, T. B. Isha

Abstract:

Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.

Keywords: Electric Vehicles, Thermal analysis, Induction Motor, switched reluctance motor, inset permanent magnet motor, loss models

Procedia PDF Downloads 33
5 One-Way Electric Vehicle Carsharing in an Urban Area with Vehicle-To-Grid Option

Authors: Cem Isik Dogru, Salih Tekin, Kursad Derinkuyu

Abstract:

Electric vehicle (EV) carsharing is an alternative method to tackle urban transportation problems. This method can be applied by several options. One of the options is the one-way carsharing, which allow an EV to be taken at a designated location and leaving it on another specified location customer desires. Although it may increase users’ satisfaction, the issues, namely, demand dissatisfaction, relocation of EVs and charging schedules, must be dealt with. Also, excessive electricity has to be stored in batteries of EVs. To cope with aforementioned issues, two-step mixed integer programming (MIP) model is proposed. In first step, the integer programming model is used to determine amount of electricity to be sold to the grid in terms of time periods for extra profit. Determined amounts are provided from the batteries of EVs. Also, this step works in day-ahead electricity markets with forecast of periodical electricity prices. In second step, other MIP model optimizes daily operations of one-way carsharing: charging-discharging schedules, relocation of EVs to serve more demand and renting to maximize the profit of EV fleet owner. Due to complexity of the models, heuristic methods are introduced to attain a feasible solution and different price information scenarios are compared.

Keywords: Forecasting, Electric Vehicles, mixed integer programming, one-way carsharing

Procedia PDF Downloads 1
4 Comparing Forecasting Performances of the Bass Diffusion Model and Time Series Methods for Sales of Electric Vehicles

Authors: Reinhold Kosfeld, Andreas Gohs

Abstract:

This study should be of interest for practitioners who want to predict precisely the sales numbers of vehicles equipped with an innovative propulsion technology as well as for researchers interested in applied (regional) time series analysis. The study is based on the numbers of new registrations of pure electric and hybrid cars. Methods of time series analysis like ARIMA are compared with the Bass Diffusion-model concerning their forecasting performances for new registrations in Germany at the national and federal state levels. Especially it is investigated if the additional information content from regional data increases the forecasting accuracy for the national level by adding predictions for the federal states. Results of parameters of the Bass Diffusion Model estimated for Germany and its sixteen federal states are reported. While the focus of this research is on the German market, estimation results are also provided for selected European and other countries. Concerning Bass-parameters and forecasting performances, we get very different results for Germany's federal states and the member states of the European Union. This corresponds to differences across the EU-member states in the adoption process of this innovative technology. Concerning the German market, the adoption is rather proceeded in southern Germany and stays behind in Eastern Germany except for Berlin.

Keywords: Electric Vehicles, bass diffusion model, forecasting performance, market diffusion

Procedia PDF Downloads 1
3 A Proposed Approach for Optimizing the Location of Electric Vehicle Charging Stations

Authors: Abdullah Al-Juboori, Akmal Abdelfatah

Abstract:

Due to the significant increase in the number of vehicles, the emission of harmful gasses is increasing, which is a problem to the public health. To reduce the huge amount of harmful gasses emitted and to improve the environmental conditions, countries need to start planning and encouraging the use of electric vehicles (EVs). However, before extensively using EVs, charging stations need to be planned in order to meet the charging needs of electric vehicles. These charging stations need to be placed at various locations so that they can serve the maximum number of electric vehicles, without significant delays. Such service will encourage the use of EVs to perform the daily trips. In this paper, a procedure for optimizing the locations of EVs charging stations. The proposed approach uses the simulation software DYNASMART (Dynamic Network Assignment Simulation for Road Telematics) to simulate different percentages of EVs under different traffic congestion levels. In order to simulate EVs in DYNASMART, two main components have to be coded in the software. First, a subroutine will be added to simulate EVs (i.e. tracking the battery charge level). The second component considers the operation of charging stations. This component needs to keep track of the station charging capacity, number of charging units, number of occupied and unoccupied charging units, charging time, expected waiting time for vehicles arriving to the charging station, …etc. Additionally, an optimization procedure is proposed to optimize the location of EVs charging stations. The problem considers predefined possible locations of the charging stations based on the electric grid system (m possible locations). The optimization procedure seeks to determine the best location for a set of (n) charging stations (n ≤ m). The objective function of this model includes two components, which are the waiting and traveling time to the charging station and it is subject to several constraints.

Keywords: Optimization, Electric Vehicles, Traffic Simulation, charging stations

Procedia PDF Downloads 1
2 Potential of Electric Vehicles in Reducing World CO2 Footprints – a Review

Authors: Yuehong Su, Saleh Alotaibi, Siddig Omer

Abstract:

The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offers both human comfort “noise, pollution” as well as reduced (or no) emissions of greenhouse gases. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, PHEVs have the best fuel economy, followed by HEVs and ICE. Since BEVs don’t use any fuel, their fuel economy is estimated as price per kilometre. Similarly, in terms of greenhouse gas emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. FCEVs are also zero-emission vehicles, they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considering as zero emission vehicles.

Keywords: Electric Vehicles, Fuel Economy, zero emission car, CO2 footprint

Procedia PDF Downloads 1
1 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method

Authors: Melike Nikbay, Ibrahim Cicek

Abstract:

Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.

Keywords: Optimization, Electric Vehicles, Optimal Control, e-powertrain

Procedia PDF Downloads 1