Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

elastic foundation Related Abstracts

6 Vibration Analysis of Functionally Graded Engesser-Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi


This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: free vibration, functionally graded beam, elastic foundation, Engesser-Timoshenko beam theory

Procedia PDF Downloads 234
5 Effect of Hybridization of Composite Material on Buckling Analysis with Elastic Foundation Using the High Order Theory

Authors: Benselama Khadidja, El Meiche Noureddine


This paper presents the effect of hybridization material on the variation of non-dimensional critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the Principle of Virtual Displacement; the formulation is based on a new function of shear deformation theory taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress-free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature.

Keywords: buckling, elastic foundation, hybrid cross-ply laminates, Winkler and Pasternak, two variables plate theory

Procedia PDF Downloads 365
4 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan


In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: Impact, moving load, elastic foundation, thick plate

Procedia PDF Downloads 181
3 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Authors: Mohammad Azadi, Hamidreza Ghezavati, Gholamhosein Khosravi


In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords: Vibration Control, Carbon Nanotubes, elastic foundation, piezoelectric layers

Procedia PDF Downloads 127
2 Forced Vibration of a Planar Curved Beam on Pasternak Foundation

Authors: Merve Ermis, Akif Kutlu, Nihal Eratlı, Mehmet H. Omurtag


The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted.

Keywords: Dynamic Analysis, Finite Element Method, elastic foundation, curved beam

Procedia PDF Downloads 144
1 Mathematical Analysis of Simple Supported Euler-Bernoulli Beam on a Variable Elastic Foundation under a Partially Distributed Moving Load

Authors: I. A. Idowu, A. A. Owolabi, S. O. Sogunro, F. O. Akinpelu


The dynamic responses of an elastically supported Euler- Bernoulli beam on variable elastic foundation under partially distributed moving loads were investigated. The governing equation is fourth order partial differential equation, which was reduced to second order ordinary differential equation by using the analytical method in terms of series solution and solved by a numerical method using mathematical software (Maple). The numerical analysis shows that the response amplitude of the moving mass and moving force for variable pre-stressed increase as mass of the load M increases. It was found that the response displacement of the beam decreases as the value of the elastic foundation K increases. Also, the response displacement of the beam decreases as the value of the pre-stressed N increase. Comparison of moving mass and moving force shown that moving mass is greater than that of moving force.

Keywords: moving load, elastic foundation, Euler-Bernoulli beam, Variable pre-stressed, partially distributed, moving force

Procedia PDF Downloads 106