Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

dust effect Related Abstracts

3 Effect of Dust on Performances of Single Crystal Photovoltaic Solar Module

Authors: S. Mansouri, A. Benatiallah, A. Harrouz, D. Benatiallah, F. Abaidi

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system fluctuates and depend on meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work, we have studied the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: Experimental, Performances, solar modulen pv, dust effect

Procedia PDF Downloads 343
2 Particle Dust Layer Density and the Optical Wavelength Absorption Relationship in Photovoltaic Module

Authors: M. Mesrouk, A. Hadj Arab

Abstract:

This work allows highlight the effect of dust on the absorption of the optical spectrum on the photovoltaic module, the effect of the particles dust presence on the photovoltaic modules have been a microscopic scale studied with COMSOL Multi-physic software simulation. In this paper, we have supposed the dust layer as a diffraction network repetitive optical structure characterized by the spacing between particle which represented by 'd' and the simulated structure (air-dust particle-glass). In this study we can observe the relationship between the wavelength and the particle spacing, the simulation shows us that the maximum wavelength transmission value corresponding, λ0 = 400nm, which represent the spacing value between the particles dust, d = 400 nm. In fact, we can observe that while increase dust layer density the wavelength transmission value decrease, there is a relationship between the density and wavelength value which can be absorbed in a dusty photovoltaic panel.

Keywords: dust effect, photovoltaic module, spectral absorption, wavelength transmission

Procedia PDF Downloads 318
1 Dust and Soling Accumulation Effect on Photovoltaic Systems in MENA Region

Authors: I. Muslih, A. Alkhalailah, A. Merdji

Abstract:

Photovoltaic efficiency is highly affected by dust accumulation; the dust particles prevent direct solar radiation from reaching the panel surface; therefore a reduction in output power will occur. A study of dust and soiling accumulation effect on the output power of PV panels was conducted for different periods of time from May to October in three countries of the MENA region, Jordan, Egypt, and Algeria, under local weather conditions. This study leads to build a more realistic equation to estimate the power reduction as a function of time. This logarithmic function shows the high reduction in power in the first days with 10% reduction in output power compared to the reference system, where it reaches a steady state value after 60 days to reach a maximum value of 30%.

Keywords: Solar energy, PV system, dust effect, mena

Procedia PDF Downloads 80