Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Difference Equations Related Abstracts

3 Finite Element Method for Solving the Generalized RLW Equation

Authors: Abdel-Maksoud Abdel-Kader Soliman


The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.

Keywords: Difference Equations, solitons, generalized RLW equation, quartic b-spline, nonlinear partial differential equations

Procedia PDF Downloads 318
2 Matrix Valued Difference Equations with Spectral Singularities

Authors: Şerifenur Cebesoy, Yelda Aygar, Elgiz Bairamov


In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: Difference Equations, Asymptotics, continuous spectrum, eigenvalues, jost functions, spectral singularities

Procedia PDF Downloads 297
1 Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation

Authors: Y. N. Reddy


The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions.

Keywords: Differential Equations, Difference Equations, boundary layer, singular perturbations

Procedia PDF Downloads 59