Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14

Diabetic retinopathy Related Abstracts

14 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections

Authors: A. Sopharak, B. Uyyanonvara, S. Barman

Abstract:

Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.

Keywords: Diabetic retinopathy, microaneurysm, naive Bayes classifier, SVM classifier

Procedia PDF Downloads 198
13 Digital Retinal Images: Background and Damaged Areas Segmentation

Authors: Eman A. Gani, Loay E. George, Faisel G. Mohammed, Kamal H. Sager

Abstract:

Digital retinal images are more appropriate for automatic screening of diabetic retinopathy systems. Unfortunately, a significant percentage of these images are poor quality that hinders further analysis due to many factors (such as patient movement, inadequate or non-uniform illumination, acquisition angle and retinal pigmentation). The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. So, the segmentation of retinal image is essential for this purpose, the segmentation is employed to smooth and strengthen image by separating the background and damaged areas from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, methods for segmenting colored retinal image are proposed to improve the quality of retinal image diagnosis. The methods generate two segmentation masks; i.e., background segmentation mask for extracting the background area and poor quality mask for removing the noisy areas from the retinal image. The standard retinal image databases DIARETDB0, DIARETDB1, STARE, DRIVE and some images obtained from ophthalmologists have been used to test the validation of the proposed segmentation technique. Experimental results indicate the introduced methods are effective and can lead to high segmentation accuracy.

Keywords: Diabetic retinopathy, retinal images, fundus images, background segmentation, damaged areas segmentation

Procedia PDF Downloads 244
12 Novel Algorithm for Restoration of Retina Images

Authors: P. Subbuthai, S. Muruganand

Abstract:

Diabetic Retinopathy is one of the complicated diseases and it is caused by the changes in the blood vessels of the retina. Extraction of retina image through Fundus camera sometimes produced poor contrast and noises. Because of this noise, detection of blood vessels in the retina is very complicated. So preprocessing is needed, in this paper, a novel algorithm is implemented to remove the noisy pixel in the retina image. The proposed algorithm is Extended Median Filter and it is applied to the green channel of the retina because green channel vessels are brighter than the background. Proposed extended median filter is compared with the existing standard median filter by performance metrics such as PSNR, MSE and RMSE. Experimental results show that the proposed Extended Median Filter algorithm gives a better result than the existing standard median filter in terms of noise suppression and detail preservation.

Keywords: Diabetic retinopathy, exudates, median filter, fundus retina image, microaneurysms

Procedia PDF Downloads 189
11 Genistein Treatment Confers Protection Against Gliopathy & Vasculopathy of the Diabetic Retina in Rats

Authors: Sanaa AM Elgayar, Sohair A Eltony, Maha Mahmoud Abd El Rouf

Abstract:

Background: Retinopathy remains an important complication of diabetes. Aim of work: This work was carried out to evaluate the protective effects of genistein from diabetic retinopathy in rat. Material and Methods: Fifteen adult male albino rats were divided into two groups; Group I: control (n=5) and Group II: streptozotocin induced diabetic group (n=10), which is equally divided into two subgroups; IIa (diabetic vehicle control) and IIb (diabetic genistein-treated). Specimens were taken from the retina 12 weeks post induction, processed and examined using light, immunohistochemical, ultrastructural techniques. Blood samples were assayed for the levels of glucose. Results: In comparison with the diabetic non-treated group, the histological changes in macro and microglial glial cells reactivity and retinal blood capillaries were improved in genistein-treated groups. In addition, GFAP and iNOS expressions in the retina and the blood glucose level were reduced. Conclusion: Genistein ameliorates the histological changes of diabetic retinopathy reaching healing features, which resemble that of a normal retina.

Keywords: Diabetic retinopathy, genistein, glia, capillaries

Procedia PDF Downloads 183
10 Comparison of Visual Acuity Outcome and Complication after Phacoemulsification between Diabetic and Non-Diabetic Patients at Burapha University Hospital, Chonburi, Thailand

Authors: Luksanaporn Krungkraipetch

Abstract:

One hundred cataract patients with phacoemulsification were enrolled in the study to compare of visual acuity outcome and complication after phacoemulsification between diabetic and non-diabetic patients at Burapha University Hospital, Chonburi, Thailand. Fifty patients were diabetic (type II) group and 50 patients were non-diabetic group. All cases were operated by one doctor with the same pre-operative care, operation (phacoemulsification), and post-operative care. Visual acuity and complication after surgery were assessed after the operation for two years. There were no significant differences in demographic data between the two groups. The visual outcome values ≥ 2 lines and ≥ 20/40 had no significant differences between two groups after two years of surgery. The complication rate in diabetic group had cystoid macular edema 16%, rupture posterior capsule 8%, posterior capsule opacity 2%, uveitis 2 %, and 2% endophthalmitis. The non-diabetic group had cystoid macular edema 12%, rupture posterior capsule 8%, uveitis 2%, posterior capsule opacity 2%, and 2% wound leak. Comparison of visual acuity outcome and complication after phacoemulsification between diabetic and non-diabetic patients had no statistical significant differences between these two groups. It was found that cystoid macular edema was the most common complication in both groups and 10% of retinopathy progression was seen.

Keywords: Cataract, Diabetic retinopathy, Visual acuity, phacoemulsification, cataract extraction

Procedia PDF Downloads 226
9 Effects of Bariatric Surgery on Preventing the Progression of Diabetic Retinopathy

Authors: Yunzi Chen, James Laybourne, Sarah Steven, Peter Carey, David Steel, Maria Sandinha

Abstract:

Introduction: Bariatric surgery is popular with the rising incidence of obesity. Its well-known benefits include significant and rapid glycaemic control. However, cases of paradoxical worsening in diabetic retinopathy (DR) despite improved glycaemic control have been reported. Purpose: clarification on the evolution of diabetic retinopathy after bariatric surgery. Method: retrospective study of 40 patients with Type 2 diabetes who underwent bariatric surgery in a UK specialist bariatric unit between 2009 and 2011. Pre-operative and post-operative visual acuity (VA), weight, HbA1c and annual DRSS screening results were analysed. Median follow up was 50 months. Results: No significant change in VA was found during the post-operative period. 85% of patients improved HbA1c post-operatively of which 53% achieved non-diabetic HbA1c of <6.1% - despite this, 2 patients developed new DR. First post-operative screening showed 80% of patients experienced no change, 8% improved but 13% of patients developed new DR (1 case with sight-threatening maculopathy). 80% of these cases persisted up to 24 months. The proportion of patients developing new or worse DR fluctuated over time, peaking at the 3rd annual screening with 26% (15% regressed, 56% stable). The probability of developing new or worse DR postoperatively was significantly associated with a high pre-operative HbA1c (>8%) and male gender. Conclusions: bariatric surgery does not guarantee long-term improvement or prevention of DR. Asymptomatic changes in DR occurred up to 5 years postoperatively. We therefore consider it prudent to continue screening in this cohort of patients.

Keywords: Obesity, Bariatric surgery, Diabetic retinopathy, type 2 diabetes mellitus

Procedia PDF Downloads 148
8 Autogenous Diabetic Retinopathy Censor for Ophthalmologists - AKSHI

Authors: Asiri Wijesinghe, N. D. Kodikara, Damitha Sandaruwan

Abstract:

The Diabetic Retinopathy (DR) is a rapidly growing interrogation around the world which can be annotated by abortive metabolism of glucose that causes long-term infection in human retina. This is one of the preliminary reason of visual impairment and blindness of adults. Information on retinal pathological mutation can be recognized using ocular fundus images. In this research, we are mainly focused on resurrecting an automated diagnosis system to detect DR anomalies such as severity level classification of DR patient (Non-proliferative Diabetic Retinopathy approach) and vessel tortuosity measurement of untwisted vessels to assessment of vessel anomalies (Proliferative Diabetic Retinopathy approach). Severity classification method is obtained better results according to the precision, recall, F-measure and accuracy (exceeds 94%) in all formats of cross validation. In ROC (Receiver Operating Characteristic) curves also visualized the higher AUC (Area Under Curve) percentage (exceeds 95%). User level evaluation of severity capturing is obtained higher accuracy (85%) result and fairly better values for each evaluation measurements. Untwisted vessel detection for tortuosity measurement also carried out the good results with respect to the sensitivity (85%), specificity (89%) and accuracy (87%).

Keywords: Diabetic retinopathy, exudates, fundus image, microaneurisms, hemorrhages, tortuosity, optic disc, fovea

Procedia PDF Downloads 192
7 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: Diabetic retinopathy, support vector machine, fundus images, Gabor filter, STARE

Procedia PDF Downloads 164
6 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: Diabetic retinopathy, exudates, hemorrhages, fundus, CHT

Procedia PDF Downloads 121
5 Computer-Aided Exudate Diagnosis for the Screening of Diabetic Retinopathy

Authors: Shu-Min Tsao, Chung-Ming Lo, Shao-Chun Chen

Abstract:

Most diabetes patients tend to suffer from its complication of retina diseases. Therefore, early detection and early treatment are important. In clinical examinations, using color fundus image was the most convenient and available examination method. According to the exudates appeared in the retinal image, the status of retina can be confirmed. However, the routine screening of diabetic retinopathy by color fundus images would bring time-consuming tasks to physicians. This study thus proposed a computer-aided exudate diagnosis for the screening of diabetic retinopathy. After removing vessels and optic disc in the retinal image, six quantitative features including region number, region area, and gray-scale values etc… were extracted from the remaining regions for classification. As results, all six features were evaluated to be statistically significant (p-value < 0.001). The accuracy of classifying the retinal images into normal and diabetic retinopathy achieved 82%. Based on this system, the clinical workload could be reduced. The examination procedure may also be improved to be more efficient.

Keywords: Image Processing, Computer-Aided Diagnosis, Diabetic retinopathy, exudate

Procedia PDF Downloads 132
4 Co-Existence of Central Serous Retinopathy and Diabetic Retinopathy: A Diagnostic Dilemma

Authors: Avantika Verma

Abstract:

Diabetic retinopathy (DR) and Central serous retinopathy (CSR) are 2 distinct entities, with difference in age of presentation, eitiopathogenesis and clinical features, but when occurring together, can be a diagnostic dilemma and requires careful evaluation. Case study of 3 patients with long standing diabetes (>15yrs) and features of Central serous retinopathy was done at Bangalore West Lions Superspeciality Eye Hospital, Bangalore, India in 2013. Even though diabetic retinopathy and CSR have different pathologies, they can coexist. The reason for coexistence could be the following: A patient with CSR as a young adult could develop DR in later years. Stress could be the contributing factor in older patient with diabetes.Stress could be a common factor for both, as it is one of the important factors in the pathogenesis of Maturity Onset Diabetes Miletus (MODY). In any situation, a careful evaluation is necessary to differentiate the cause of fundus picture, as treatment differs for the two diseases.

Keywords: stress, Diabetic retinopathy, existence, central serous retinopathy

Procedia PDF Downloads 127
3 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: Diabetic retinopathy, multi-layer perceptron, discrete wavelet transform, radial basis function, video-oculography (VOG)

Procedia PDF Downloads 128
2 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.

Keywords: Diabetic retinopathy, type 2 diabetes mellitus, ROC curve, Cox proportional hazard regression

Procedia PDF Downloads 66
1 Information System for Early Diabetic Retinopathy Diagnostics Based on Multiscale Texture Gradient Method

Authors: L. S. Godlevsky, N. V. Kresyun, V. P. Martsenyuk, K. S. Shakun, T. V. Tatarchuk, K. O. Prybolovets, L. F. Kalinichenko, M. Karpinski, T. Gancarczyk

Abstract:

Structures of eye bottom were extracted using multiscale texture gradient method and color characteristics of macular zone and vessels were verified in CIELAB scale. The difference of average values of L*, a* and b* coordinates of CIE (International Commision of Illumination) scale in patients with diabetes and healthy volunteers was compared. The average value of L* in diabetic patients exceeded such one in the group of practically healthy persons by 2.71 times (P < 0.05), while the value of a* index was reduced by 3.8 times when compared with control one (P < 0.05). b* index exceeded such one in the control group by 12.4 times (P < 0.05). The integrated index on color difference (ΔE) exceeded control value by 2.87 times (P < 0.05). More pronounced differences with ΔE were followed by a shorter period of MA appearance with a correlation level at -0.56 (P < 0.05). The specificity of diagnostics raised by 2.17 times (P < 0.05) and negative prognostic index exceeded such one determined with the expert method by 2.26 times (P < 0.05).

Keywords: Diabetic retinopathy, Medical Diagnostics, multiscale texture gradient, color spectrum analysis

Procedia PDF Downloads 1