Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

coagulant Related Abstracts

5 Effectiveness of Jackfruit Seed Starch as Coagulant Aid in Landfill Leachate Treatment

Authors: Mohd Suffian Yusoff, Noor Aina Mohamad Zuki, Mohd Faiz Muaz Ahmad Zamri

Abstract:

Currently, aluminium sulphate (alum), ferric chloride and polyaluminium chloride (PAC) are the most common coagulants being used for leachate coagulation-flocculation treatment. However, the impact of these residual’s coagulants have sparked huge concern ceaselessly. Therefore, development of natural coagulant as an alternative coagulant for treatment process has been given full attentions. In this attempt jackfruit seed starch (JSS) was produce by extraction method. The removal efficiency was determined using jar test method. The removal of organic matter and ammonia were compared between JSS used in powder form and diluted form in leachate. The yield of starch from the extraction method was 33.17 % with light brown in colour. The removal of turbidity was the highest at pH 8 for both diluted and powdered JSS with 38% and 8.7% of removal. While for colour removal the diluted JSS showed 18.19% of removal compared to powdered JSS. The diluted JSS also showed the highest removal of suspended solid with 3.5% compared to powdered JSS with 2.8%. Instead of coagulant, JSS as coagulant aid has succeed to reduce the dosage of PAC from 900 mg/L to 528 mg/L by maintaining colour and turbidity removal up to 94% and 92 % respectively. The JSS coagulant also has decreased the negative charge of the leachate nearly to the neutral charge (0.209 mv). The result proved that JSS was more effective to be used as coagulant aid landfill leachate treatment.

Keywords: Landfill Leachate, natural coagulant, jackfruit seed starch, coagulant

Procedia PDF Downloads 319
4 Groundwater Treatment of Thailand's Mae Moh Lignite Mine

Authors: A. Laksanayothin, W. Ariyawong

Abstract:

Mae Moh Lignite Mine is the largest open-pit mine in Thailand. The mine serves coal to the power plant about 16 million tons per year. This amount of coal can produce electricity accounting for about 10% of Nation’s electric power generation. The mining area of Mae Moh Mine is about 28 km2. At present, the deepest area of the pit is about 280 m from ground level (+40 m. MSL) and in the future the depth of the pit can reach 520 m from ground level (-200 m.MSL). As the size of the pit is quite large, the stability of the pit is seriously important. Furthermore, the preliminary drilling and extended drilling in year 1989-1996 had found high pressure aquifer under the pit. As a result, the pressure of the underground water has to be released in order to control mine pit stability. The study by the consulting experts later found that 3-5 million m3 per year of the underground water is needed to be de-watered for the safety of mining. However, the quality of this discharged water should meet the standard. Therefore, the ground water treatment facility has been implemented, aiming to reduce the amount of naturally contaminated Arsenic (As) in discharged water lower than the standard limit of 10 ppb. The treatment system consists of coagulation and filtration process. The main components include rapid mixing tanks, slow mixing tanks, sedimentation tank, thickener tank and sludge drying bed. The treatment process uses 40% FeCl3 as a coagulant. The FeCl3 will adsorb with As(V), forming floc particles and separating from the water as precipitate. After that, the sludge is dried in the sand bed and then be disposed in the secured land fill. Since 2011, the treatment plant of 12,000 m3/day has been efficiently operated. The average removal efficiency of the process is about 95%.

Keywords: Groundwater, Arsenic, lignite, coagulant, ferric chloride, coal mine

Procedia PDF Downloads 181
3 Potential of Water Purification of Turbid Surface Water Sources in Remote Arid and Semi-Arid Rural Areas of Rajasthan by Moringa Oleifera (Drumstick) Tree Seeds

Authors: Pomila Sharma

Abstract:

Rajasthan is among regions with greatest climate sensitivity and lowest adaptive capabilities. In many parts of the Rajasthan surface water which can be highly turbid and contaminated with fecal coliform bacteria is used for drinking purposes. The majority rely almost exclusively upon traditional sources of highly turbid and untreated pathogenic surface water for their domestic water needs. In many parts of rural areas of Rajasthan, it is still difficult to obtain clean water, especially remote habitations with no groundwater due to quality issues or depletion and limited feasibility to connect with surface water schemes due to low density of population in these areas to justify large infrastructure investment. The most viable sources are rain water harvesting, community managed open wells, private wells, ponds and small-scale irrigation reservoirs have often been the main traditional sources of rural drinking water. Turbidity is conventionally removed by treating the water with expensive chemicals. This study has to investigate the use of crushed seeds from the tree Moringa oleifera (drumstick) as a natural alternative to conventional coagulant chemicals. The use of Moringa oleifera seed powder can produce potable water of higher quality than the original source. Moringa oleifera a native species of northern India, the tree is now grown extensively throughout the tropics and found in many countries of Africa, Asia & South America. The seeds of tree contains significant quantities of low molecular weight, water soluble proteins which carries the positive charge when the crushed seeds are added to water. This protein binds in raw water with negatively charged turbid water with bacteria, clay, algae, etc. Under proper mixing, these particles make flocks, which may be left to settle by gravity or be removed by filtration. Using Moringa oleifera as a replacement coagulation in such surface sources of arid and semi-arid areas can meet the need for water purification in remote places of Rajasthan state of India. The present study accesses to find out laboratory based investigation of the effect of seeds of Moringa tree on its coagulation effectiveness (purification) using turbid water samples of surface source of the Rajasthan state. In this study, moringa seed powder showed that filtering with seed powder may diminish water pollution and bacterial counts. Results showed Moringa oleifera seeds coagulate 90-95% of turbidity and color efficiently leading to an aesthetically clear supernatant & reduced about 85-90% of bacterial load reduction in samples.

Keywords: Water Purification, turbidity, coagulant, bacterial load

Procedia PDF Downloads 30
2 Waste Water Treatment by Moringa oleifera Seed Powder in Historical Jalmahal Lake Located in Semi-Arid Monsoon Zone of India

Authors: Pomila Sharma

Abstract:

The rapid urbanization in India was not accompanied by the establishment of waste water treatment facility at similar and same pace. The inland fresh water ecosystem is increasingly subjected to great stress from various human activities. Jalmahal Lake is located in Jaipur city of Rajasthan state; the lake was constructed about 400 years ago and surrounded by hills. The lake was approximately 139 hectare in full spread and has catchment area of 23.5 sq. kilometer. Out of the total catchment area approximate 40% falls inside dense urban area of Jaipur city. During the showers, the treated and untreated waste waters and runoff waters get mixed and enter the lake through the various influx channels, and the lake water quality gets affected by the inflow of waste water. The main objective of this work was to use the Moringa oleifera seeds as a natural adsorbent for the treatment of wastewater in lake. Moringa oleifera is a tropical, multipurpose tree whose seeds contain high-quality edible oil 40% by weight and water soluble, non-toxic protein that act as an effective coagulant for the removal of organic matter in water and waste water treatment. Laboratory Jar test procedure had been used for coagulation studies; an experiment runs using lake water. Water extracts/powder of Moringa seed applied to treat polluted water of lake. In present study various doses of Moringa oleifera seed coagulant viz. 100 mg/L, 200 mg/L, and 400 mg/L were taken and checked for the efficiency dose on treated and untreated polluted water. Turbidity and color removal is one of the important steps in a waste water treatment processes. The results indicate significant reduction in turbidity and color. Standard plate count was significantly reduced fecal coliform levels too. All parameters were reduced with the increased dose of Moringa oleifera. It was clear from the study Moringa oleifera seed was shown to be a potential bio-coagulant, for treatment of sewage laden polluted water in the lake.

Keywords: wastewater, Moringa oleifera, turbidity, coagulant, plate count

Procedia PDF Downloads 254
1 Municipal Leachate Treatment by Using Polyaluminium Chloride as a Coagulant

Authors: Syeda Azeem Unnisa

Abstract:

The present study was undertaken at Jawaharnagar Solid Waste Municipal Dumpsite, Greater Hyderabad Municipal Corporation, Telangana State, India in 2017 which generates 90,000 litres of leachate per day. The main objective of the leachate treatment was to remove organic compounds like color, suspended solids, ammonia and COD by coagulation-flocculation using polyaluminum chloride (PAC) as coagulant which has higher coagulant efficiency and relative low cost compared to the conventional coagulants. Jar test apparatus was used to conduct experiments for pH 7, rapid mixing speed 150 rpm for 3 minute, slow mixing speed 30 rpm for 20 minute and the settling time of 30 minute for different dosage of PAC (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 g/L). The highest percentage of removal of suspended solids, color, COD and ammonical nitrogen are 97%, 96%, 60% and 37% with PAC optimum dose of 2.0 g/l. The results indicate that the PAC was effective in leachate treatment which is very much suitable for high toxicity of waste and economically feasible for Indian conditions. The treated water can be utilized for other purpose apart from drinking.

Keywords: treatment, Leachate, coagulant, polyaluminium chloride

Procedia PDF Downloads 39