Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

classifier Related Abstracts

9 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou


In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: Learning, Biomedical Data, knowledge extraction, classifier, algorithms decision tree

Procedia PDF Downloads 389
8 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Xiaoyan Zhu, Xiaohan Bookman


Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labeled samples and flexible network. We have conducted experiments on four UCI open data sets and achieved good results as expected. In conclusion, our model could handle more sparse labeled and more high-dimension data set in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: classifier, feed-forward neural network, Max-Margin Principle, structural risk

Procedia PDF Downloads 193
7 Innovative Screening Tool Based on Physical Properties of Blood

Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan


This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.

Keywords: Nonlinear, Physical Properties, viscosity, Diagnostic, Device, Blood, Wettability, surface tension, classifier

Procedia PDF Downloads 241
6 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Kwang Ryel Ryu, Seongcheol Kwon, Jeongmin Kim


We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: Machine Learning, IoT, Smart Home, classifier, situation-awareness

Procedia PDF Downloads 268
5 Roughness Discrimination Using Bioinspired Tactile Sensors

Authors: Zhengkun Yi


Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.

Keywords: Feature Extraction, classifier, bioinspired fingertip, roughness discrimination

Procedia PDF Downloads 161
4 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Asif Hassan, Syed Atif Hassan, Luv Mehta


Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: Machine Learning, prediction, classifier, popularity, music tracks

Procedia PDF Downloads 360
3 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan


Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: Machine Learning, prediction, classifier, molecular descriptors, antituberculosis drug

Procedia PDF Downloads 216
2 Bilingualism: A Case Study of Assamese and Bodo Classifiers

Authors: Samhita Bharadwaj


This is an empirical study of classifiers in Assamese and Bodo, two genetically unrelated languages of India. The objective of the paper is to address the language contact between Assamese and Bodo as reflected in classifiers. The data has been collected through fieldwork in Bodo recording narratives and folk tales and eliciting specific data from the speakers. The data for Assamese is self-produced as native speaker of the language. Assamese is the easternmost New-Indo-Aryan (henceforth NIA) language mainly spoken in the Brahmaputra valley of Assam and some other north-eastern states of India. It is the lingua franca of Assam and is creolised in the neighbouring state of Nagaland. Bodo, on the other hand, is a Tibeto-Burman (henceforth TB) language of the Bodo-Garo group. It has the highest number of speakers among the TB languages of Assam. However, compared to Assamese, it is still a lesser documented language and due to the prestige of Assamese, all the Bodo speakers are fluent bi-lingual in Assamese, though the opposite isn’t the case. With this context, classifiers, a characteristic phenomenon of TB languages, but not so much of NIA languages, presents an interesting case study on language contact caused by bilingualism. Assamese, as a result of its language contact with the TB languages which are rich in classifiers; has developed the richest classifier system among the IA languages in India. Yet, as a part of rampant borrowing of Assamese words and patterns into Bodo; Bodo is seen to borrow even Assamese classifiers into its system. This paper analyses the borrowed classifiers of Bodo and finds the route of this borrowing phenomenon in the number system of the languages. As the Bodo speakers start replacing the higher numbers from five with Assamese ones, they also choose the Assamese classifiers to attach to these numbers. Thus, the partial loss of number in Bodo as a result of language contact and bilingualism in Assamese is found to be the reason behind the borrowing of classifiers in Bodo. The significance of the study lies in exploring an interesting aspect of language contact in Assam. It is hoped that this will attract further research on bilingualism and classifiers in Assam.

Keywords: Language contact, bi-lingual, classifier, borrowing, Assamese, Bodo

Procedia PDF Downloads 52
1 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: Z. Aboura, M. Kharrat, G. Moreau


The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: Pattern Recognition, Damage Mechanisms, acoustic emission, classifier, first damage threshold, interlock composite materials

Procedia PDF Downloads 33