Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13

cellular automata Related Abstracts

13 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan


The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: Image Processing, Rough Sets, cellular automata, rough neural networks

Procedia PDF Downloads 268
12 Improved Particle Swarm Optimization with Cellular Automata and Fuzzy Cellular Automata

Authors: Ramin Javadzadeh


The particle swarm optimization are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Particle swarm optimization is introduced for the first time to overcome its problems. The fuzzy cellular automata is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the Particle swarm optimization algorithms.

Keywords: Optimization, cellular automata, Particle Swarm Optimization, local search, cellular learning automata

Procedia PDF Downloads 382
11 Playing Light Switching Games with Langton's Turmite

Authors: Crista Arangala


Light switching games are both popular and well studied. This paper introduces a cellular automata called Langton’s turmite to several different light switching scenarios and discusses when Langton’s turmite can solve these games.

Keywords: Chaos, cellular automata, lights out, alien tiles, Langton's Turmite

Procedia PDF Downloads 365
10 A Graph SEIR Cellular Automata Based Model to Study the Spreading of a Transmittable Disease

Authors: Kulbhushan Agnihotri, Natasha Sharma


Cellular Automata are discrete dynamical systems which are based on local character and spatial disparateness of the spreading process. These factors are generally neglected by traditional models based on differential equations for epidemic spread. The aim of this work is to introduce an SEIR model based on cellular automata on graphs to imitate epidemic spreading. Distinctively, it is an SEIR-type model where the population is divided into susceptible, exposed, infected and recovered individuals. The results obtained from simulations are in accordance with the spreading behavior of a real time epidemics.

Keywords: epidemic spread, cellular automata, graph, susceptible

Procedia PDF Downloads 321
9 Drying Modeling of Banana Using Cellular Automata

Authors: M. Shahedi, M. Fathi, M. Sadeghi, Z. Farhaninejad


Drying is one of the oldest preservation methods for food and agriculture products. Appropriate control of operation can be obtained by modeling. Limitation of continues models for complex boundary condition and non-regular geometries leading to appearance of discrete novel methods such as cellular automata, which provides a platform for obtaining fast predictions by rule-based mathematics. In this research a one D dimensional CA was used for simulating thin layer drying of banana. Banana slices were dried with a convectional air dryer and experimental data were recorded for validating of final model. The model was programmed by MATLAB, run for 70000 iterations and von-Neumann neighborhood. The validation results showed a good accordance between experimental and predicted data (R=0.99). Cellular automata are capable to reproduce the expected pattern of drying and have a powerful potential for solving physical problems with reasonable accuracy and low calculating resources.

Keywords: Modeling, Drying, cellular automata, banana

Procedia PDF Downloads 296
8 Multi-Objective Optimization of Intersections

Authors: Xiang Li, Jian-Qiao Sun


As the crucial component of city traffic network, intersections have significant impacts on urban traffic performance. Despite of the rapid development in transportation systems, increasing traffic volumes result in severe congestions especially at intersections in urban areas. Effective regulation of vehicle flows at intersections has always been an important issue in the traffic control system. This study presents a multi-objective optimization method at intersections with cellular automata to achieve better traffic performance. Vehicle conflicts and pedestrian interference are considered. Three categories of the traffic performance are studied including transportation efficiency, energy consumption and road safety. The left-turn signal type, signal timing and lane assignment are optimized for different traffic flows. The multi-objective optimization problem is solved with the cell mapping method. The optimization results show the conflicting nature of different traffic performance. The influence of different traffic variables on the intersection performance is investigated. It is observed that the proposed optimization method is effective in regulating the traffic at the intersection to meet multiple objectives. Transportation efficiency can be usually improved by the permissive left-turn signal, which sacrifices safety. Right-turn traffic suffers significantly when the right-turn lanes are shared with the through vehicles. The effect of vehicle flow on the intersection performance is significant. The display pattern of the optimization results can be changed remarkably by the traffic volume variation. Pedestrians have strong interference with the traffic system.

Keywords: Multi-objective optimization, cellular automata, intersection, traffic system

Procedia PDF Downloads 324
7 Multilevel Gray Scale Image Encryption through 2D Cellular Automata

Authors: Rupali Bhardwaj


Cryptography is the science of using mathematics to encrypt and decrypt data; the data are converted into some other gibberish form, and then the encrypted data are transmitted. The primary purpose of this paper is to provide two levels of security through a two-step process, rather than transmitted the message bits directly, first encrypted it using 2D cellular automata and then scrambled with Arnold Cat Map transformation; it provides an additional layer of protection and reduces the chance of the transmitted message being detected. A comparative analysis on effectiveness of scrambling technique is provided by scrambling degree measurement parameters i.e. Gray Difference Degree (GDD) and Correlation Coefficient.

Keywords: cellular automata, correlation coefficient, scrambling, Arnold cat map, game of life, gray difference degree

Procedia PDF Downloads 246
6 Cellular Automata Using Fractional Integral Model

Authors: Yasser F. Hassan


In this paper, a proposed model of cellular automata is studied by means of fractional integral function. A cellular automaton is a decentralized computing model providing an excellent platform for performing complex computation with the help of only local information. The paper discusses how using fractional integral function for representing cellular automata memory or state. The architecture of computing and learning model will be given and the results of calibrating of approach are also given.

Keywords: Learning, Memory, cellular automata, fractional integral

Procedia PDF Downloads 193
5 Exploration of Various Metrics for Partitioning of Cellular Automata Units for Efficient Reconfiguration of Field Programmable Gate Arrays (FPGAs)

Authors: Peter Tabatt, Christian Siemers


Using FPGA devices to improve the behavior of time-critical parts of embedded systems is a proven concept for years. With reconfigurable FPGA devices, the logical blocks can be partitioned and grouped into static and dynamic parts. The dynamic parts can be reloaded 'on demand' at runtime. This work uses cellular automata, which are constructed through compilation from (partially restricted) ANSI-C sources, to determine the suitability of various metrics for optimal partitioning. Significant metrics, in this case, are for example the area on the FPGA device for the partition, the pass count for loop constructs and communication characteristics to other partitions. With successful partitioning, it is possible to use smaller FPGA devices for the same requirements as with not reconfigurable FPGA devices or – vice versa – to use the same FPGAs for larger programs.

Keywords: Parallel Computing, Metrics, cellular automata, partitioning, reconfigurable FPGA

Procedia PDF Downloads 118
4 Cellular Automata Modelling of Titanium Alloy

Authors: Jyoti Jha, Asim Tewari, Sushil Mishra


The alpha-beta Titanium alloy (Ti-6Al-4V) is the most common alloy in the aerospace industry. The hot workability of Ti–6Al–4V has been investigated by means of hot compression tests carried out in the 750–950 °C temperature range and 0.001–10s-1 strain rate range. Stress-strain plot obtained from the Gleeble 3800 test results show the dynamic recrystallization at temperature 950 °C. The effect of microstructural characteristics of the deformed specimens have been studied and correlated with the test temperature, total strain and strain rate. Finite element analysis in DEFORM 2D has been carried out to see the effect of flow stress parameters in different zones of deformed sample. Dynamic recrystallization simulation based on Cellular automata has been done in DEFORM 2D to simulate the effect of hardening and recovery during DRX. Simulated results well predict the grain growth and DRX in the deformed sample.

Keywords: cellular automata, compression test, DRX, DEFORM

Procedia PDF Downloads 155
3 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira


The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

Keywords: Artificial Neural Networks, Pattern Recognition, Decision Support System, cellular automata

Procedia PDF Downloads 267
2 Achieving Better Security by Using Nonlinear Cellular Automata as a Cryptographic Primitive

Authors: Swapan Maiti, Dipanwita Roy Chowdhury


Nonlinear functions are essential in different cryptoprimitives as they play an important role on the security of the cipher designs. Rule 30 was identified as a powerful nonlinear function for cryptographic applications. However, an attack (MS attack) was mounted against Rule 30 Cellular Automata (CA). Nonlinear rules as well as maximum period CA increase randomness property. In this work, nonlinear rules of maximum period nonlinear hybrid CA (M-NHCA) are studied and it is shown to be a better crypto-primitive than Rule 30 CA. It has also been analysed that the M-NHCA with single nonlinearity injection proposed in the literature is vulnerable against MS attack, whereas M-NHCA with multiple nonlinearity injections provide maximum length cycle as well as better cryptographic primitives and they are also secure against MS attack.

Keywords: cellular automata, maximum period nonlinear CA, Meier and Staffelbach attack, nonlinear functions

Procedia PDF Downloads 114
1 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan


Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: classification, Deep learning, cellular automata, neural cellular automata

Procedia PDF Downloads 10