Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Carbon Emission Related Abstracts

4 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations

Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman


CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.

Keywords: Sustainability, maritime Logistics, Green supply chain, Carbon Emission, slow steaming

Procedia PDF Downloads 307
3 Load Balancing Technique for Energy - Efficiency in Cloud Computing

Authors: Rani Danavath, V. B. Narsimha


Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.

Keywords: Distributed Computing, Cloud Computing, Green Computing, Energy Efficiency, Energy Consumption, Carbon Emission, Load Balancing

Procedia PDF Downloads 328
2 Effects of China's Urban Form on Urban Carbon Emission

Authors: Lu Lin


Urbanization has reshaped physical environment, energy consumption and carbon emission of the urban area. China is a typical developing country under a rapid urbanization process and is the world largest carbon emission country. This study aims to explore the correlation between urban form and carbon emission caused by urban energy consumption in China. 287 provincial-level and prefecture-level cities are studied in 2000, 2005, and 2010. Compact ratio index, shape index, and fractal dimension index are used to quantify urban form. Geographically weighted regression (GWR) model is employed to explore the relationship between urban form, energy consumption, and related carbon emission. The results show the average compact ratio index decreased from 2000 to 2010 which indicates urban in China sprawled. The average fractal dimension index increases by 3%, indicating the spatial layouts of China's cities were more complicated. The results by the GWR model show that shape index and fractal dimension index had a non-significant relationship with carbon emission by urban energy consumption. However, compact urban form reduced carbon emission. The findings of this study will help policy-makers make sustainable urban planning and reduce urban carbon emission.

Keywords: Carbon Emission, Urban Form, GWR model, urban energy consumption

Procedia PDF Downloads 149
1 Impact of Nitrogen Fertilization on Soil Respiration and Net Ecosystem Production in Maize

Authors: Lingling Li, Shirley Lamptey, Junhong Xie


Agriculture in the semi-arid is often challenged by overuse of N, inadequate soil water, and heavy carbon emissions thereby threatening sustainability. Field experiments were conducted to investigate the effect of nitrogen fertilization levels (0-N₀, 100-N₁₀₀, 200-N₂₀₀, and 300 kg ha⁻¹-N₃₀₀) on soil water dynamics, soil respiration (Rs), net ecosystem production (NEP), and biomass yield. Zero nitrogen soils decreased Rs by 23% and 16% compared to N₃₀₀ and N₂₀₀ soils, respectively. However, biomass yield was greatest under N₃₀₀ compared with N₀, which therefore translated into increased net primary production (NPP) by 89% and NEP by 101% compared to N₀. To a lesser extent, N₂₀₀ increased net primary production by 69% and net ecosystem production by 79% compared to N₀. Grain yields were greatest under N₃₀₀ compared with N₁₀₀ and N₀, which therefore translated into increased carbon emission efficiency (CEE) by 53%, 39% and 3% under N₃₀₀ compared to N₀, N₁₀₀, and N₂₀₀ treatments respectively. Under the conditions of this study, crop yield and CEE may be optimized at nitrogen application rates in the range of 200-300 kg ha⁻¹. Based on these results, there appears potential for 200 kg N ha⁻¹ to be used to improve yield and increase CEE in the context of the rainfall-limiting environment.

Keywords: Semi-Arid, Carbon Emission, carbon emission efficiency, C sequestration, N rates

Procedia PDF Downloads 104