Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8

BWR Related Abstracts

8 TRACE/FRAPTRAN Analysis of Kuosheng Nuclear Power Plant Dry-Storage System

Authors: H. T. Lin, J. R. Wang, W. Y. Li, C. Shih, Y. Chiang, H. C. Chen, S. W. Chen

Abstract:

The dry-storage systems of nuclear power plants (NPPs) in Taiwan have become one of the major safety concerns. There are two steps considered in this study. The first step is the verification of the TRACE by using VSC-17 experimental data. The results of TRACE were similar to the VSC-17 data. It indicates that TRACE has the respectable accuracy in the simulation and analysis of the dry-storage systems. The next step is the application of TRACE in the dry-storage system of Kuosheng NPP (BWR/6). Kuosheng NPP is the second BWR NPP of Taiwan Power Company. In order to solve the storage of the spent fuels, Taiwan Power Company developed the new dry-storage system for Kuosheng NPP. In this step, the dry-storage system model of Kuosheng NPP was established by TRACE. Then, the steady state simulation of this model was performed and the results of TRACE were compared with the Kuosheng NPP data. Finally, this model was used to perform the safety analysis of Kuosheng NPP dry-storage system. Besides, FRAPTRAN was used tocalculate the transient performance of fuel rods.

Keywords: FRAPTRAN, TRACE, BWR, dry-storage

Procedia PDF Downloads 351
7 The Analysis and Simulation of TRACE in the Ultimate Response Guideline for Chinshan BWR/4 Nuclear Power Plant

Authors: H. T. Lin, J. R. Wang, C. Shih, H. C. Chen, S. W. Chen, S. C. Chiang, C. C. Liu

Abstract:

In this research, TRACE model of Chinshan BWR/4 Nuclear Power Plant (NPP) has been developed for the simulation and analysis of Ultimate Response Guideline (URG). The main actions of URG are the depressurization and low pressure water injection of reactor and containment venting. This research focuses to verify the URG efficiency under Fukushima-like conditions. Trace analysis results show that the URG can keep the PCT below the criteria 1088.7 K under Fukushima-like conditions. It indicated that Chinshan NPP was safe.

Keywords: Safety Analysis, TRACE, BWR, URG

Procedia PDF Downloads 401
6 The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool

Authors: H. T. Lin, J. R. Wang, W. Y. Li, C. Shih, H. C. Chen, S. W. Chen, Y. S. Tseng

Abstract:

TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m × 7.87 m × 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day.

Keywords: FRAPTRAN, TRACE, BWR, spent fuel pool

Procedia PDF Downloads 192
5 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant

Authors: J. R. Wang, H. C. Chang, C. Shih, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.

Keywords: TRACE, RELAP5, BWR, SNAP

Procedia PDF Downloads 260
4 The Study of Ultimate Response Guideline of Kuosheng BWR/6 Nuclear Power Plant Using TRACE and SNAP

Authors: J. R. Wang, C. Shih, Y. Chiang, H. C. Chen, S. W. Chen, S. C. Chiang, T. Y. Yu, J. H. Yang

Abstract:

In this study of ultimate response guideline (URG), Kuosheng BWR/6 nuclear power plant (NPP) TRACE model was established. The reactor depressurization, low pressure water injection, and containment venting are the main actions of URG. This research focuses to evaluate the efficiency of URG under Fukushima-like conditions. Additionally, the sensitivity study of URG was also performed in this research. The analysis results of TRACE present that URG can keep the peak cladding temperature (PCT) below 1088.7 K (the failure criteria) under Fukushima-like conditions. It implied that Kuosheng NPP was at the safe situation.

Keywords: Safety Analysis, TRACE, BWR, ultimate response guideline (URG)

Procedia PDF Downloads 306
3 Using HABIT to Estimate the Concentration of CO2 and H2SO4 for Kuosheng Nuclear Power Plant

Authors: J. R. Wang, W. Y. Li, C. Shih, Y. Chiang, S. W. Chen, Y. S. Tseng, W. S. Hsu, J. H. Yang

Abstract:

In this research, the HABIT code was used to estimate the concentration under the CO2 and H2SO4 storage burst conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and reports were used in this research. In addition, to evaluate the control room habitability for these cases, the HABIT analysis results were compared with the R.G. 1.78 failure criteria. The comparison results show that the HABIT results are below the criteria. Additionally, some sensitivity studies (stability classification, wind speed and control room intake rate) were performed in this study.

Keywords: BWR, habit, habitability, Kuosheng

Procedia PDF Downloads 326
2 The Concentration Analysis of CO2 Using ALOHA Code for Kuosheng Nuclear Power Plant

Authors: J. R. Wang, C. Shih, Y. Chiang, H. C. Chen, S. W. Chen, W. S. Hsu, J. H. Yang

Abstract:

Not only radiation materials, but also the normal chemical material stored in the power plant can cause a risk to the residents. In this research, the ALOHA code was used to perform the concentration analysis under the CO2 storage burst or leakage conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and data were used in this study. Additionally, the analysis results of ALOHA code were compared with the R.G. 1.78 failure criteria in order to confirm the control room habitability. The comparison results show that the ALOHA result for burst case was 0.923 g/m3 which was below the criteria. However, the ALOHA results for leakage case was 11.3 g/m3.

Keywords: BWR, habitability, Kuosheng, ALOHA

Procedia PDF Downloads 145
1 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition

Authors: J. R. Wang, C. Shih, S. W. Chen, Y. T. Ku, Y. F. Chang

Abstract:

In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.

Keywords: Decommissioning, CFD, BWR, upper pool

Procedia PDF Downloads 38