Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Arithmetic Related Abstracts

3 Application of Modulo-2 Arithmetic in Securing Communicated Messages throughout the Globe

Authors: Okike Benjamin, Ejd Garba

Abstract:

Today, the word encryption has become very popular even among non-computer professionals. There is no doubt that some works have been carried out in this area, but more works need to be done. Presently, most of the works on encryption is concentrated on the sender of the message without paying any attention to the message recipient. However, it is a good practice if any message sent to someone is received by the particular person whom the message is sent to. This work seeks to ensure that at the receiving end of the message, there is a security to ensure that the recipient computes a key that would enable the encrypted message to be accessed. This key would be in form of password. This would make it possible for a given message to be sent to several people at the same time. When this happens, it is only those people who computes the key correctly that would be given the opportunity to access even the encrypted message, which can in turn be decrypted using the appropriate key.

Keywords: information security, Cyber Space, Arithmetic, modulo-2

Procedia PDF Downloads 163
2 Learners’ Conspicuous and Significant Errors in Arithmetic

Authors: Michael Lousis

Abstract:

The systematic identification of the most conspicuous and significant errors made by learners during three-years of testing of their progress in learning Arithmetic are presented in this article. How these errors have changed over three-years of school instruction of Arithmetic also is shown. The sample is comprised of two hundred (200) English students and one hundred and fifty (150) Greek students. These students were purposefully selected according to their participation in each testing session in the development of the three-year Kassel Project in England and Greece, in both domains simultaneously in Arithmetic and Algebra. The data sample includes six test-scripts corresponding to three testing sessions in both Arithmetic and Algebra respectively.

Keywords: Arithmetic, Errors, Kassel Project, progress of learning

Procedia PDF Downloads 125
1 Teaching Practices for Subverting Significant Retentive Learner Errors in Arithmetic

Authors: Michael Lousis

Abstract:

The systematic identification of the most conspicuous and significant errors made by learners during three-years of testing of their progress in learning Arithmetic throughout the development of the Kassel Project in England and Greece was accomplished. How much retentive these errors were over three-years in the officially provided school instruction of Arithmetic in these countries has also been shown. The learners’ errors in Arithmetic stemmed from a sample, which was comprised of two hundred (200) English students and one hundred and fifty (150) Greek students. The sample was purposefully selected according to the students’ participation in each testing session in the development of the three-year project, in both domains simultaneously in Arithmetic and Algebra. Specific teaching practices have been invented and are presented in this study for subverting these learners’ errors, which were found out to be retentive to the level of the nationally provided mathematical education of each country. The invention and the development of these proposed teaching practices were founded on the rationality of the theoretical accounts concerning the explanation, prediction and control of the errors, on the conceptual metaphor and on an analysis, which tried to identify the required cognitive components and skills of the specific tasks, in terms of Psychology and Cognitive Science as applied to information-processing. The aim of the implementation of these instructional practices is not only the subversion of these errors but the achievement of the mathematical competence, as this was defined to be constituted of three elements: appropriate representations - appropriate meaning - appropriately developed schemata. However, praxis is of paramount importance, because there is no independent of science ‘real-truth’ and because praxis serves as quality control when it takes the form of a cognitive method.

Keywords: Cognitive Science, Cognitive Psychology, Arithmetic, Kassel Project, information-processing paradigm, level of the nationally provided mathematical education, praxis, remedial mathematical teaching practices, retentiveness of errors

Procedia PDF Downloads 204