Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26

Antibiotic Resistance Related Abstracts

26 Antibiotic Resistance of Enterococci Isolated from Raw Cow Milk

Authors: Margita Čanigová, Jana Račková, Miroslav Kročko, Viera Ducková, Vladimíra Kňazovická

Abstract:

The aim of the study was to test the milk samples in terms of enterococci presence and their counts. Tested samples were as follows: raw cow milk, raw cow milk stored at 10°C for 16 hours and milk pasteurised at 72°C for 15 seconds. The typical colonies were isolated randomly and identified by classical biochemical test - EN-COCCUS test (Lachema, CR) and by PCR. Isolated strains were tested in terms of antibiotic resistance by well diffusion method. Examined antibiotics were: vancomycin (30 μg/disc), gentamicin (120 μg/disc), erythromycin (15 μg/disc), teicoplanine (30 μg/disc), ampicillin (10 μg/disc) and tetracycline (30 μg/disc). Average value of enterococci counts in raw milk cistern samples (n=30) was 8.25 ± 1.37 ×103 CFU/cm3. Storage tank milk samples (n=30) showed an increase (P > 0.05) and average value was 9.16 ± 1.49 × 103 CFU/cm3. Occurrence of enterococci in pasteurized milk (n=30) was sporadic and their counts were mostly below 10 CFU/cm3. Overall, 96 enterococci strains were isolated. In samples of raw cow milk and stored raw cow milk, Enterococcus faecalis was a dominant species (58.1% and 71.7%, respectively), followed by E. faecium (16.3% and 0%, respectively). Enterococcus mundtii, E. casseliflavus, E. durans and E. gallinarum were isolated, too. Resistances to ampicillin, erythromycin, gentamicin, tetracycline and vancomycin were found in 7.29%, 3.13%, 4.00%, 13.54% and 10.42% of isolated enterococci strains, respectively. Resistance to teicoplanine was not found in any isolated strain. All Vancomycin-Resistant Enterococci (VRE) belonged to E. faecalis. Obtained results confirmed that raw milk is a potential risk of enterococci resistant to antibiotics transmission into the food chain.

Keywords: Biosystems Engineering, Milk, Antibiotic Resistance, enterococci

Procedia PDF Downloads 183
25 Seasonal Effect of Antibiotic Resistant Bacteria into the Environment from Treated Sewage Effluents

Authors: S. N. Al-Bahry, S. K. Al-Musharafi, I. Y. Mahmoud

Abstract:

Recycled treated sewage effluents (TSE) is used for agriculture, Public park irrigation and industrial purposes. TSE was found to play a major role in the distribution of antibiotic resistant bacteria into the environment. Fecal coliform and enterococci counts were significantly higher during summer compared to winter seasons. Oman has low annual rainfall with annual average temperature varied between 15-45oC. The main source of potable water is from seawater desalination. Resistance of the isolates to 10 antibiotics (Amikacin, Ampicillin, chloramphenicol, gentamycine, minocylin, nalidixicacid, neomycin, streptomycin, Tetracycline, Tobramycin, and Trimethoprim) was tested. Both fecal coliforms and enterococci were multiple resistant to 2-10 antibiotics. However, temperature variation during summer and winter did not affect resistance of the isolates to antibiotics. The significance of this investigation may be indicator to the environmental TSE pollution.

Keywords: Environment, Bacteria, Antibiotic Resistance, sewage treated effluent

Procedia PDF Downloads 280
24 Heavy Metals and Antibiotic Resistant Bacteria as Indicators of Effluent Environmental Pollution in the Green Turtles, Chelonia Mydas

Authors: S. K. Al-Musharafi, I. Y. Mahmoud, S. N. Al-Bahry

Abstract:

At Ras Al-Hadd Reserve, Eggs from green turtles and Chelonia mydas were randomly collected immediately after Oviposition. Eggshells taken from fresh eggs and sand collected from the body chamber were analyzed for eight heavy metals (Al, Br, Cd, Co, Cu, Fe, S, and Zn) using inductively coupled plasma mass spectrometry (ICP). Heavy metal concentrations varied significantly (P<0.05) between nest sand and eggshells. Zn values were significantly higher than the other heavy metals. A total of 60 heterotrophic bacteria belong to eight genera were isolated from fresh egg contents (albumen and yolk). Resistance of the isolates to Amikacin, ampicillin, chloramphenicol, gentamycine, minocylin, nalidixicacid, neomycin, streptomycin, tetracycline, tobramycin, and Trimethoprim was tested. More than 40 % of the isolates were multiple resistant to 2-7 antibiotics. Most of the resistant strains were also resistant to Zn. The value of these findings may indicate that the origin of pollution is of human contaminated effluents.

Keywords: Environment, Heavy Metals, Bacteria, Antibiotic Resistance, sea turtles

Procedia PDF Downloads 236
23 Emergence of Vancomycin Resistant and Methcillin Resistant Staphylococus aureus in Patients with Different Clinical Manifestations in Khartoum State, Sudan

Authors: Maimona A. E. Elimam, Suhair Rehan, Miskelyemen A. Elmekki, Mogahid M. Elhassan

Abstract:

Staphylococcus aureus (Staph. aureus), a major cause of potentially life-threatening infections acquired in healthcare and community settings, has developed resistance to most classes of antimicrobial agents as determined by the dramatic increase. The present study aimed to determine the prevalence of MRSA, and VRSA in patients with different clinical manifestations in Khartoum state. The study population (n, 426) were males and females with different age categories, suffering either from wound infections (105), ear infections (121), or UTI (101), in addition to nasal carriers of medical staff (100). Cultures, Gram staining, and other biochemical tests were performed for conventional identification. Modified Kirby-Bauer disk diffusion method was applied and DNA was extracted from MRSA and VRSA isolates and PCR was then performed for amplification of arc, mecA, VanA, and VanB genes. The results confirmed the existence of Staph. aureus in 49/426 (11.5%) cases among which MRSA were isolated from 34/49 (69.4%) when modified Kirby-Bauer disk diffusion method was applied. Ten out of these 34 MRSA were confirmed as VRSA by cultures on BHI agar containing 6μg/ml vancomycin according to NCCLS criteria. PCR revealed that out of the 34 MRSA isolates, 26 were mecA positive (76.5%) while 8 (23.5%) were arcC positive. No vanA or VanB genes were detected. Molecular method confirmed the results for MRSA through the presence of either arcC or mecA genes while it failed to approve the occurrence of VRSA since neither VanA or VanB genes were detected. Thus, VRSA may be attributed to other factors.

Keywords: Antibiotic Resistance, Staphylococcus aureus, MRSA, sudan, VRSA, Khartoum

Procedia PDF Downloads 309
22 Development of a Novel Nanobiosystem for the Selective Nanophotothermolysis of Meticilin Resistant Staphyloccocous Aureus Using Anti-MRSA Antibody Functionalized Gold Nanoparticles

Authors: Lucian Mocan, Cristian Matea, Flaviu A. Tabaran, Teodora Mocan, Cornel Iancu

Abstract:

Introduction: Due to antibiotic resistance, systemic infections caused by Meticilin resistant Staphyloccocous Aureus (MRSA) are the main cause of millions of deaths each year. Development of new active biomolecules that are highly effective and refractory to antibiotic resistance may open new avenues in the field of antimicrobial therapy. In this research, we have focused on the development of a novel nanobiosystem with high affinity for MRSA microorganism to mediate its selective laser thermal ablation. Materials and Methods: Gold nanoparticles (15nm in diameter) linked to a specific antibody against MRSA surface were selectively delivered (at various concentrations and incubation times) and internalized into MRSA microorganism following the treatment these multidrug-resistant bacteria were irradiated using a 2w, 808 nm LASER. Results and Discussions: The post-irradiation necrotic rate ranged from 51.2% (for 1 mg/L) to 87.3% (for 50 mg/L) at 60 seconds (p<0.001), while at 30 minute the necrotic rate increased from 64.3% (1 mg/L) to 92.1% (50 mg/L), p value<0.001. Significantly lower apoptotic rates were obtained in irradiated MRSA treated with GNPs only (control) treated for 60 seconds and 30 minutes at concentrations ranging from 1 mg/L to 50 mg/L. We show here that the optimal LASER mediated the necrotic effect of MRSA after incubation with anti-MRSA-Ab was obtained at a concentration of 50 mg/L. Conclusion: In the presented research, we obtained a very efficacious pulse laser mode treatment of individual MRSA agents with minimal effects on the surrounding medium, providing highly localized destruction only for MRSA microorganism.

Keywords: Antibiotic Resistance, gold nanoparticles, MRSA, photothermolysis

Procedia PDF Downloads 318
21 Phenotypic Characterization of Listeria Spp Isolated from Chicken Carcasses Marketed in Northeast of Iran

Authors: Abdollah Jamshidi, Tayebeh Zeinali, Mehrnaz Rad, Jamshid Razmyar

Abstract:

Listeria infections occur worldwide in variety of animals and man. Listeriae are widely distributed in nature. The organism has been isolated from the feces of humans and several animals, different soils, plants, aquatic environments and food of animal and vegetable origin. Listeria monocytogenes is recognized as important food-borne pathogens due to its high mortality rate. This organism is able to growth at refrigeration temperature, and high osmotic pressure. Poultry can become contaminated environmentally or through healthy carrier birds. In recent decades, prophylactic use of antimicrobial agents may be lead to emergence of antibiotic resistant organisms, which can be transmitted to human through consumption of contaminated foods. In this study, from 200 fresh chicken carcasses samples which were collected randomly from different supermarkets and butcheries, 80 samples were detected as contaminate with Listeria spp. and 19% of the isolates identified as Listeria monocytogene using multiplex PCR assay. Conventional methods were used to differentiate other species of the listeria genus. The results showed the most prevalent isolates as L. monocytogenes (48.75%). Other isolates were detected as Listeria innocua (28.75%), Listeria murrayi (20%), Listeria grayi (3.75%) and Listeria welshimeri (2.5%).The Majority of the isolates had multidrug resistance to commonly used antibiotics. Most of them were resistant to erythromycin (50%), followed by Tetracycline (44.44%), Clindamycin (41.66%), and Trimethoprim (25%). Some of them showed resistance to chloramphenicol (17.65%). The results indicate the resistance of the isolates to antimicrobials commonly used to treat human listeriosis, which could be a potential health hazard for consumers.

Keywords: Antibiotic Resistance, listeria species, L. monocytogenes, chicken carcass

Procedia PDF Downloads 269
20 The Prevalence and Profile of Extended Spectrum B-Lactamase (ESBL) Producing Enterobacteriaceae Species in the Intensive Care Unit (ICU) Setting of a Tertiary Care Hospital of North India

Authors: Harmeet Pal Singh Dhooria, Deepinder Chinna, UPS Sidhu, Alok Jain

Abstract:

Serious infections caused by gram-negative bacteria are a significant cause of mortality and morbidity in the hospital setting. In acute care facilities like in intensive care units (ICUs), the intensity of antimicrobial use together with a population highly susceptible to infection, creates an environment, which facilitates both emergence and transmission of Extended Spectrum -lactamase (ESBL) producing Enterobacteriaceae species. The study was conducted in the Medical Intensive Care Unit (MICU) and the Pulmonary Critical Care Unit (PCCU) of the Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India. Out of a total of 1108 samples of urine, blood and respiratory tract secretions received for culture and sensitivity analysis from Medical Intensive Care Unit and Pulmonary Critical Care Unit, a total of 170 isolates of Enterobacteriaceae species were obtained which were then included in our study. Out of these 170 isolates, confirmed ESBL production was seen in 116 (68.24%) cases. E.coli was the most common species isolated (56.47%) followed by Klebsiella (32.94%), Enterobacter (5.88%), Citrobacter (3.53%), Enterobacter (0.59%) and Morganella (0.59%) among the total isolates. The rate of ESBL production was more in Klebsiella (78.57%) as compared to E.coli (60.42%). ESBL producers were found to be significantly more common in patients with prior history of hospitalization, antibiotic use, and prolonged ICU stay. Also significantly increased the prevalence of ESBL related infections was observed in patients with a history of catheterization or central line insertion but not in patients with the history of intubation. Patients who had an underlying malignancy had significantly higher prevalence of ESBL related infections as compared to other co-morbid illnesses. A slightly significant difference in the rate of mortality/LAMA was observed in the ESBL producer versus the non-ESBL producer group. The rate of mortality/LAMA was significantly higher in the ESBL related UTI but not in the ESBL related respiratory tract and bloodstream infections. ESBL producing isolates had significantly higher rates of resistance to Cefepime and Piperacillin/Tazobactum, and to non β-lactum antibiotics like Amikacin and Ciprofloxacin. The level of resistance to Imipenem was lower as compared to other antibiotics. However, it was noted that ESBL producing isolates had higher levels of resistance to Imipenem as compared to non-ESBL producing isolates. Conclusion- The prevalence of ESBL producing organisms was found to be very high (68.24%) among Enterobacteriaceae isolates in our ICU setting as among other ICU care settings around the world.

Keywords: Antibiotic Resistance, ICU, enterobacteriaceae, extended spectrum B-lactamase (ESBL)

Procedia PDF Downloads 144
19 Development of Generally Applicable Intravenous to Oral Antibiotic Switch Therapy Criteria

Authors: H. Akhloufi, M. Hulscher, J. M. Prins, I. H. Van Der Sijs, D. Melles, A. Verbon

Abstract:

Background: A timely switch from intravenous to oral antibiotic therapy has many advantages, such as reduced incidence of IV-line related infections, a decreased hospital length of stay and less workload for healthcare professionals with equivalent patient safety. Additionally, numerous studies have demonstrated significant decreases in costs of a timely intravenous to oral antibiotic therapy switch, while maintaining efficacy and safety. However, a considerable variation in iv to oral antibiotic switch therapy criteria has been described in literature. Here, we report the development of a set of iv to oral switch criteria that are generally applicable in all hospitals. Material/methods: A RAND-modified Delphi procedure, which was composed of 3 rounds, was used. This Delphi procedure is a widely used structured process to develop consensus using multiple rounds of questionnaires within a qualified panel of selected experts. The international expert panel was multidisciplinary and composed out of clinical microbiologists, infectious disease consultants and clinical pharmacists. This panel of 19 experts appraised 6 major intravenous to oral antibiotic switch therapy criteria and operationalized these criteria using 41 measurable conditions extracted from the literature. The procedure to select a concise set of iv to oral switch criteria included 2 questionnaire rounds and a face-to-face meeting. Results: The procedure resulted in the selection of 16 measurable conditions, which operationalize 6 major intravenous to oral antibiotic switch therapy criteria. The following 6 major switch therapy criteria were selected: (1) Vital signs should be good or improving when bad. (2) Signs and symptoms related to the infection have to be resolved or improved. (3) The gastrointestinal tract has to be intact and functioning. (4) The oral route should not be compromised. (5) Absence of contra-indicated infections. (6) An oral variant of the antibiotic with good bioavailability has to exist. Conclusions: This systematic stepwise method which combined evidence and expert opinion resulted in a feasible set of 6 major intravenous to oral antibiotic switch therapy criteria operationalized by 16 measurable conditions. This set of early antibiotic iv to oral switch criteria can be used in daily practice in all adult hospital patients. Future use in audits and as rules in computer assisted decision support systems will lead to improvement of antimicrobial steward ship programs.

Keywords: Antibiotic Resistance, antibiotic stewardship, intravenous to oral, switch therapy

Procedia PDF Downloads 256
18 The Appropriateness of Antibiotic Prescribing within Dundee Dental Hospital

Authors: Salma Ainine, Colin Ritchie, Tracey McFee

Abstract:

Background: The societal impact of antibiotic resistance is a major public health concern. The increase in the incidence of resistant bacteria can ultimately be fatal. Objective: To analyse the appropriateness of antibiotic prescribing in Dundee Dental Hospital, ultimately improving the safety and quality of patient care. Methods: Two examiners independently cross-checked approximately fifty consecutive prescriptions, and corresponding patient case notes, for three data collection cycles between August 2014–September 2015. The Scottish Dental Clinical Effectiveness Program (SDCEP) Drug Prescribing for Dentistry guidelines was the standard utilised. The criteria: clinical justification, regime justification, and review arrangements was measured, and compared to the standard. Results: Cycle one revealed 42% of antibiotic prescriptions were appropriate. Interventions included: multiple staff meetings, an introduction of a checklist attached to the prescription pack, and production of patient leaflets explaining indications for antibiotics. Cycle two and three revealed 44%, and 30% compliance, respectively. Conclusion: The results of the audit have yet to meet target standards set out in prescribing guidelines. However, steps are being taken and change has occurred on a cultural level.

Keywords: Antibiotic Resistance, antibiotic stewardship, dental infection, hygiene standards

Procedia PDF Downloads 83
17 Study of the Genes Involved in the Resistance of Nosocomial Pseudomonas aeruginosa to Fluoroquinolone

Authors: Rosetta Moshirian Farahi, Ahya Abdi Ali, Sara Gharavi

Abstract:

The major mechanism of Pseudomonas aeruginosa resistance to fluoroquinolones is the alteration of target enzymes, type II and IV topoisomerases due to mutations in the quinolone resistance-determining regions (QRDR) of the gyrA and parC genes coding A subunits of these enzymes. 37 isolates from patients with burn wounds and 20 isolates from blood, urine and sputum specimen were selected to evaluate mutations involved in antibiotic resistance and were subsequently verified for their resistance to ciprofloxacin. QRDRs regions of gyrA and parC were amplified by polymerase chain reaction (PCR) and were subsequently sequenced. 90% of isolates with MIC≥8 µg/ml to ciprofloxacin had a mutation in gyrA gene in which threonine at position 83 changed to isoleucine. 87.5% of isolates had mutation in parC, Serine 87 changed. 75% had Ser87Leu and 12.5% possessed Serin87Trp. Various silent mutations were also detected such as Val103Val, Ala118Ala, Ala136Ala, His132His in gyrA and Ala115Ala in parC. The data indicates that the common mutation in gyrA is Thr83Ile and in parC is Ser87Leu/Trp. No individual parC mutation was observed while mutations in gyrA and parC occurred simultaneously and appears to be the main reason of high-level resistance to fluoroquinolones in patients with burn wounds and urine infection. The vast majority of P.aeruginosa isolates had mutation in parC which can play a crucial role in increased resistance of these isolates. This is a report of parC mutations from resistant P. aeruginosa isolates from Iran, Tehran.

Keywords: Antibiotic Resistance, P. aeruginosa, fluoroquinolones, gyrA, parC

Procedia PDF Downloads 146
16 Identification and Antibiotic Resistance Rates of Acinetobacter baumannii Strains Isolated from the Respiratory Tract Samples, Obtained from the Different Intensive Care Units

Authors: Recep Kesli, Gulşah Asik, Cengiz Demir, Onur Turkyilmaz

Abstract:

Objective: Acinetobacter baumannii (A. baumannii) can cause health-care associated infections, such as bacteremia, urinary tract and wound infections, endocarditis, meningitis, and pneumonia, particularly in intensive care unit patients. In this study, we aimed to evaluate A. baumannii production in sputum and bronchoalveolar lavage and susceptibilities for antibiotics in a 24 months period. Methods: Between October 2013 and September 2015, Acinetobacter baumannii isolated from respiratory tract speciments were evaluated retrospectively. The strains were isolated from the different intensive care units patients. A. baumannii strains were identified by both the conventional methods and aoutomated identification system -VITEK 2 (bio-Merieux, Marcy l’etoile, France). Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria. Results: All the ninety isolates included in the study were from respiratory tract specimens. While of all the isolated 90 Acinetobacter baumannii strains were found to be resistant (100%), against ceftriaxone, ceftazidime, ciprofloxacin and piperacillin/ tazobactam, resistance rates against other tested antibiotics found as follows; meropenem 77, 86%, imipenem 75, 83%, trimethoprim-sulfamethoxazole (TMP-STX) 69, 76,6%, gentamicin 51, 56,6% and amikacin 48, 53,3%. Colistin was found as the most effective antibiotic against Acinetobacter baumannii, and there were not found any resistant (0%) strain against colistin. Conclusion: This study demonstrated that the no resistance was found in Acinetobacter baumannii against to colistin. High rates of resistance to carbapenems (imipenem and meropenem) and other tested antibiotics (ceftiaxone, ceftazidime, ciprofloxacine, piperacilline-tazobactam, TMP-STX gentamicin and amikacin) also have remarkable resistance rates. There was a significant relationship between demographic features of patients such as age, undergoing mechanical ventilation, length of hospital stay with resistance rates. High resistance rates against antibiotics require implementation of the infection control program and rational use of antibiotics. In the present study, while there were not found colistin resistance, panresistance were found against to ceftriaxone, ceftazidime, ciprofloxacin and piperacillin/ tazobactam.

Keywords: Antibiotic Resistance, Acinetobacter baumannii, intensive care unit, multi drug resistance

Procedia PDF Downloads 122
15 Determination of Identification and Antibiotic Resistance Rates of Serratia marcescens and Providencia Spp. from Various Clinical Specimens by Using Both the Conventional and Automated (VITEK2) Methods

Authors: Recep Keşli, Gülşah Aşık, Cengiz Demir, Onur Türkyılmaz

Abstract:

Objective: Serratia species are identified as aerobic, motile Gram negative rods. The species Serratia marcescens (S. marcescens) causes both opportunistic and nosocomial infections. The genus Providencia is Gram-negative bacilli and includes urease-producing that is responsible for a wide range of human infections. Although most Providencia infections involve the urinary tract, they are also associated with gastroenteritis, wound infections, and bacteremia. The aim of this study was evaluate the antimicrobial resistance rates of S. marcescens and Providencia spp. strains which had been isolated from various clinical materials obtained from different patients who belongs to intensive care units (ICU) and inpatient clinics. Methods: A total of 35 S. marcescens and Providencia spp. strains isolated from various clinical samples admitted to Medical Microbiology Laboratory, ANS Research and Practice Hospital, Afyon Kocatepe University between October 2013 and September 2015 were included in the study. Identification of the bacteria was determined by conventional methods and VITEK 2 system (bio-Merieux, Marcy l’etoile, France) was used additionally. Antibacterial resistance tests were performed by using Kirby Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: The distribution of clinical samples were as follows: upper and lower respiratory tract samples 26, 74.2 % wound specimen 6, 17.1 % blood cultures 3, 8.5%. Of the 35 S. marcescens and Providencia spp. strains; 28, 80% were isolated from clinical samples sent from ICU. The resistance rates of S. marcescens strains against trimethoprim-sulfamethoxazole, piperacillin-tazobactam, imipenem, gentamicin, ciprofloxacin, ceftazidime, cefepime and amikacin were found to be 8.5 %, 22.8 %, 11.4 %, 2.8 %, 17.1 %, 40 %, 28.5 % and 5.7 % respectively. Resistance rates of Providencia spp. strains against trimethoprim-sulfamethoxazole, piperacillin-tazobactam, imipenem, gentamicin, ciprofloxacin, ceftazidime, cefepime and amikacin were found to be 10.2 %, 33,3 %, 18.7 %, 8.7 %, 13.2 %, 38.6 %, 26.7%, and 11.8 % respectively. Conclusion: S. marcescens is usually resistant to ampicillin, amoxicillin, amoxicillin/clavulanate, ampicillin/sulbactam, cefuroxime, cephamycins, nitrofurantoin, and colistin. The most effective antibiotic on the total of S. marcescens strains was found to be gentamicin 2.8 %, of the totally tested strains the highest resistance rate found against to ceftazidime 40 %. The lowest and highest resistance rates were found against gentamiycin and ceftazidime with the rates of 8.7 % and 38.6 % for Providencia spp.

Keywords: Antibiotic Resistance, intensive care unit, Serratia marcescens, Providencia spp

Procedia PDF Downloads 111
14 Identification and Antibiotic Resistance Rates of Proteus Mirabilis Strains from Various Clinical Specimens in a University Hospital, 2013-2015

Authors: Recep Keşli, Gülşah Aşık, Cengiz Demir, Onur Türkyılmaz

Abstract:

Objective: Proteus mirabilis (P. mirabilis) is one of Gram-negative pathogens in human and it causes urinary tract and nosocomial infections. P. mirabilis is susceptible to β-lactams, aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. It was aimed to investigate the resistance status to antimicrobial agents of Proteus mirabilis strains produced from samples sent to Afyon Kocatepe University, ANS Research and Practice Hospital, Microbiology Laboratory from different clinics and polyclinics during the period of 24 months. Methods: Between October 2013 and September 2015, a total of 30 Proteus were isolated from clinical samples of patients were hospitalized in intensive care units and in various departments of Afyon Kocatepe University, ANS Research and Practice Hospital. Identification of the bacteria was determined by conventional methods and VITEK 2 system (bioMérieux, France) was used additionally. Antibacterial susceptibility tests were performed by Kirby Bauer disc (Oxoid, Hempshire, England) diffusion method following the recommendations of CLSI. Results: Of the total 30 Proteus strains isolated from clinical samples, 19 from urine, 7 from wound, 4 from tracheal aspiration materials were isolated. Antimicrobial resistant for these strains were determined to 24,3% for meropenem, 26.2% for imipenem, 20.2% for amikacin 10.5% for cefepim, 33.3% for ciprofloxacin and levofloxacine, 31.6% for ceftazidime, 20% for ceftriaxone, 15.2% for gentamicin and 26.6% for amoxicillin-clavulanate, 26.2% trimethoprim-sulfamethoxale. Conclusion: In the present study, the highest number of clinical isolates of P. mirabilis were isolated from urine (63,3%), followed by the others (36,6%). The distribution of samples P. mirabilis strains to the clinics were as fallows; 16,8% intensive care unit (ICU), 29,9% polyclinics, 53,3% hospital service units The most effective antibiotic on the total of strains were found to be cefepim, the least effective antibiotics on the total of strains were found to be trimethoprim-sulfamethoxale.

Keywords: Antibiotic Resistance, intensive care unit, proteus mirabilis, Proteus spp

Procedia PDF Downloads 127
13 A Comparison of Antibiotic Resistant Enterobacteriaceae: Diabetic versus Non-Diabetic Infections

Authors: Zainab Dashti, Leila Vali

Abstract:

Background: The Middle East, in particular Kuwait, contains one of the highest rates of patients with Diabetes in the world. Generally, infections resistant to antibiotics among the diabetic population has been shown to be on the rise. This is the first study in Kuwait to compare the antibiotic resistance profiles and genotypic differences between the resistant isolates of Enterobacteriaceae obtained from diabetic and non-diabetic patients. Material/Methods: In total, 65 isolates were collected from diabetic patients consisting of 34 E. coli, 15 K. pneumoniae and 16 other Enterobacteriaceae species (including Salmonella spp. Serratia spp and Proteus spp.). In our control group, a total of 49 isolates consisting of 37 E. coli, 7 K. pneumoniae and 5 other species (including Salmonella spp. Serratia spp and Proteus spp.) were included. Isolates were identified at the species level and antibiotic resistance profiles, including Colistin, were determined using initially the Vitek system followed by double dilution MIC and E-test assays. Multi drug resistance (MDR) was defined as isolates resistant to a minimum of three antibiotics from three different classes. PCR was performed to detect ESBL genes (blaCTX-M, blaTEM & blaSHV), flouroquinolone resistance genes (qnrA, qnrB, qnrS & aac(6’)-lb-cr) and carbapenem resistance genes (blaOXA, blaVIM, blaGIM, blaKPC, blaIMP, & blaNDM) in both groups. Pulse field gel electrophoresis (PFGE) was performed to compare clonal relatedness of both E. coli and K.pneumonaie isolates. Results: Colistin resistance was determined in three isolates with MICs of 32-128 mg/L. A significant difference in resistance to ampicillin (Diabetes 93.8% vs control 72.5%, P value <0.002), augmentin (80% vs 52.5%, p value < 0.003), cefuroxime (69.2% vs 45%, p value < 0.0014), ceftazadime (73.8% vs 42.5%, p value <0.001) and ciprofloxacin (67.6% vs 40%, p value < 0.005) were determined. Also, a significant difference in MDR rates between the two groups (Diabetes 76.9%, control 57.5%, p value <0.036 were found. All antibiotic resistance genes showed a higher prevalence among the diabetic group, except for blaCTX-M, which was higher among the control group. PFGE showed a high rate of diversity between each group of isolates. Conclusions: Our results suggested an alarming rate of antibiotic resistance, in particular Colistin resistance (1.8%) among K. pneumoniea isolated from diabetic patients in Kuwait. MDR among Enterobacteriaceae infections also seems to be a worrying issue among the diabetics of Kuwait. More efforts are required to limit the issue of antibiotic resistance in Kuwait, especially among patients with diabetes mellitus.

Keywords: Diabetes, Antibiotic Resistance, enterobacreriacae, multi antibiotic resistance

Procedia PDF Downloads 134
12 Application of Bacteriophages as Natural Antibiotics in Aquaculture

Authors: Chamilani Nikapitiya, Mahanama De Zoysa, Jehee Lee

Abstract:

Most of the bacterial diseases are associated with high mortalities in aquaculture species and causing huge economic losses. Different approaches have been taken to prevent or control of bacterial diseases including use of vaccines, probiotics, chemotherapy, water quality management, etc. Antibiotics are widely applying as chemotherapy to control bacterial diseases, however, it has been shown that frequent use of antibiotics is favored to develop multi-drug resistance bacteria. Therefore, phages and phage encoded lytic proteins are known to be one of the most promising alternatives for antibiotics to avoid the emergence of antibiotic-resistant bacteria. We isolated and characterized the two lytic phages, namely pAh-1 and pAs-1 against pathogenic Aeromonas hydrophila and Aeromonas salmonicida, respectively. Morphological characteristics were analyzed by Transmission electron microscopy (TEM) and host strain specificities were tested with Aeromonas and other closely related bacterial strains. TEM analysis revealed that both pAh-1 and pAsm-1 are composed of an icosahedral head and a segmented tail, and we suggest that, they are new members of Myoviridae family. Genome sizes of isolated phages were estimated by restriction enzyme digestion of genomic DNA using selected endonucleases followed by agarose gel electrophoresis. Estimated genome size of pAh-1 and pAs-1 were approximately 64 Kbp and 120 Kbp, respectively. Both pAh-1 and pAs-1 have shown narrow host specificity. Moreover, protective effects of phage therapy against fish pathogenic A. hydrophila were investigated in zebrafish model. The survival rate was 40% higher when zebrafish received intra-peritoneal injection (i.p.) of pAh-1 were simultaneously challenge A. hydrophila (2 x 106 CFU/fish) compared to that without phage treatment. Overall results suggest that both pAh-1 and pAs-1 can be used as a potential phage therapy to control Aeromonas infections in aquaculture.

Keywords: Antibiotic Resistance, bacteriophage, Aeromonas infections, bio-control, lytic phage

Procedia PDF Downloads 85
11 Progress in Replacing Antibiotics in Farm Animal Production

Authors: Debabrata Biswas

Abstract:

The current trend in the development of antibiotic resistance by multiple bacterial pathogens has resulted in a troubling loss of effective antibiotic options for human. The emergence of multi-drug-resistant pathogens has necessitated higher dosages and combinations of multiple antibiotics, further exacerbating the problem of antibiotic resistance. Zoonotic bacterial pathogens, such as Salmonella, Campylobacter, Shiga toxin-producing Escherichia coli (such as enterohaemorrhagic E. coli or EHEC), and Listeria are the most common and predominant foodborne enteric infectious agents. It was observed that these pathogens gained/developed their ability to survive in the presence of antibiotics either in farm animal gut or farm environment and researchers believe that therapeutic and sub-therapeutic antibiotic use in farm animal production might play an important role in it. The mechanism of action of antimicrobial components used in farm animal production in genomic interplay in the gut and farm environment, has not been fully characterized. Even the risk of promoting the exchange of mobile genetic elements between microbes specifically pathogens needs to be evaluated in depth, to ensure sustainable farm animal production, safety of our food and to mitigate/limit the enteric infection with multiple antibiotic resistant bacterial pathogens. Due to the consumer’s demand and considering the current emerging situation, many countries are in process to withdraw antibiotic use in farm animal production. Before withdrawing use of the sub-therapeutic antibiotic or restricting the use of therapeutic antibiotics in farm animal production, it is essential to find alternative natural antimicrobials for promoting the growth of farm animal and/or treating animal diseases. Further, it is also necessary to consider whether that compound(s) has the potential to trigger the acquisition or loss of genetic materials in zoonotic and any other bacterial pathogens. Development of alternative therapeutic and sub-therapeutic antimicrobials for farm animal production and food processing and preservation and their effective implementation for sustainable strategies for farm animal production as well as the possible risk for horizontal gene transfer in major enteric pathogens will be focus in the study.

Keywords: Food Safety, Antibiotic Resistance, Sustainable Farming, natural antimicrobial

Procedia PDF Downloads 120
10 Evaluation of Antibiotic Resistance Profiles of Staphlyococci Isolated from Various Clinical Specimens

Authors: Recep Kesli, Merih Simsek, Cengiz Demir, Onur Turkyilmaz

Abstract:

Objective: Goal of this study was to determine the antibiotic resistance of Staphylococcus aureus (S. aureus) and Methicillin resistant staphylococcus aureus (MRSA) strains isolated at Medical Microbiology Laboratory of ANS Application and Research Hospital, Afyon Kocatepe University, Turkey. Methods: S. aureus strains isolated between October 2012 and September 2016, from various clinical specimens were evaluated retrospectively. S. aureus strains were identified by both the conventional methods and automated identification system -VITEK 2 (bio-Mérieux, Marcy l’etoile, France), and Meticillin resistance was verified using oxacillin disk with disk-diffusion method. Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria, and intermediate susceptible strains were considered as resistant. Results: Seven hundred S.aureus strains which were isolated from various clinical specimens were included in this study. These strains were mostly isolated from blood culture, tissue, wounds and bronchial aspiration. All of 306 (43,7%) were oxacillin resistant. While all the S.aureus strains were found to be susceptible to vancomycin, teicoplanin, daptomycin and linezolid, 38 (9.6 %), 77 (19.5 %), 116 (29.4 %), 152 (38.6 %) and 28 (7.1 %) were found to be resistant aganist to clindamycin, erythromycin, gentamicin, tetracycline and sulfamethoxazole/trimethoprim, retrospectively. Conclusions: Comparing to the Methicillin sensitive staphylococcus aureus (MSSA) strains, increased resistance rates of, trimethoprim-sulfamethoxazole, clindamycin, erythromycin, gentamicin, and tetracycline were observed among the MRSA strains. In this study, the most effective antibiotic on the total of strains was found to be trimethoprim-sulfamethoxazole, the least effective antibiotic on the total of strains was found to be tetracycline.

Keywords: Antibiotic Resistance, Staphylococcus aureus, MRSA, VITEK 2

Procedia PDF Downloads 88
9 Evaluation of Antibiotic Resistance and Extended-Spectrum β-Lactamases Production Rates of Gram Negative Rods in a University Research and Practice Hospital, 2012-2015

Authors: Recep Kesli, Cengiz Demir, Onur Turkyilmaz, Hayriye Tokay

Abstract:

Objective: Gram-negative rods are a large group of bacteria, and include many families, genera, and species. Most clinical isolates belong to the family Enterobacteriaceae. Resistance due to the production of extended-spectrum β-lactamases (ESBLs) is a difficulty in the handling of Enterobacteriaceae infections, but other mechanisms of resistance are also emerging, leading to multidrug resistance and threatening to create panresistant species. We aimed in this study to evaluate resistance rates of Gram-negative rods bacteria isolated from clinical specimens in Microbiology Laboratory, Afyon Kocatepe University, ANS Research and Practice Hospital, between October 2012 and September 2015. Methods: The Gram-negative rods strains were identified by conventional methods and VITEK 2 automated identification system (bio-Mérieux, Marcy l’etoile, France). Antibiotic resistance tests were performed by both the Kirby-Bauer disk-diffusion and automated Antimicrobial Susceptibility Testing (AST, bio-Mérieux, Marcy l’etoile, France) methods. Disk diffusion results were evaluated according to the standards of Clinical and Laboratory Standards Institute (CLSI). Results: Of the totally isolated 1.701 Enterobacteriaceae strains 1434 (84,3%) were Klebsiella pneumoniae, 171 (10%) were Enterobacter spp., 96 (5.6%) were Proteus spp., and 639 Nonfermenting gram negatives, 477 (74.6%) were identified as Pseudomonas aeruginosa, 135 (21.1%) were Acinetobacter baumannii and 27 (4.3%) were Stenotrophomonas maltophilia. The ESBL positivity rate of the totally studied Enterobacteriaceae group were 30.4%. Antibiotic resistance rates for Klebsiella pneumoniae were as follows: amikacin 30.4%, gentamicin 40.1%, ampicillin-sulbactam 64.5%, cefepime 56.7%, cefoxitin 35.3%, ceftazidime 66.8%, ciprofloxacin 65.2%, ertapenem 22.8%, imipenem 20.5%, meropenem 20.5 %, and trimethoprim-sulfamethoxazole 50.1%, and for 114 Enterobacter spp were detected as; amikacin 26.3%, gentamicin 31.5%, cefepime 26.3%, ceftazidime 61.4%, ciprofloxacin 8.7%, ertapenem 8.7%, imipenem 12.2%, meropenem 12.2%, and trimethoprim-sulfamethoxazole 19.2 %. Resistance rates for Proteus spp. were: 24,3% meropenem, 26.2% imipenem, 20.2% amikacin 10.5% cefepim, 33.3% ciprofloxacin and levofloxacine, 31.6% ceftazidime, 20% ceftriaxone, 15.2% gentamicin, 26.6% amoxicillin-clavulanate, and 26.2% trimethoprim-sulfamethoxale. Resistance rates of P. aeruginosa was found as follows: Amikacin 32%, gentamicin 42 %, imipenem 43%, merpenem 43%, ciprofloxacin 50%, levofloxacin 52%, cefepim 38%, ceftazidim 63%, piperacillin/tacobactam 85%, for Acinetobacter baumannii; Amikacin 53.3%, gentamicin 56.6 %, imipenem 83%, merpenem 86%, ciprofloxacin 100%, ceftazidim 100%, piperacillin/tacobactam 85 %, colisitn 0 %, and for S. malthophilia; levofloxacin 66.6 % and trimethoprim/sulfamethoxozole 0 %. Conclusions: This study showed that resistance in Gram-negative rods was a serious clinical problem in our hospital and suggested the need to perform typification of the isolated bacteria with susceptibility testing regularly in the routine laboratory procedures. This application guided to empirical antibiotic treatment choices truly, as a consequence of the reality that each hospital shows different resistance profiles.

Keywords: Antibiotic Resistance, ESBL, VITEK 2, gram negative rods

Procedia PDF Downloads 76
8 Surpassing Antibiotic Resistance through Synergistic Effects of Polyethyleneimine-Silver Nanoparticle Complex Coated Mesoporous Silica Trio-Nanoconstructs

Authors: Ranjith Kumar Kankala, Wei-Zhi Lin, Chia-Hung Lee

Abstract:

Antibiotic resistance in bacteria has become an emergency situation clinically. To improve the efficacy of antibiotics in resistant strains, advancement of nanoparticles is inevitable than ever. Herewith, we demonstrate a design by immobilizing tetracycline (TET) in copper substituted mesoporous silica nanoparticles (Cu-MSNs) through a pH-sensitive coordination link, enabling its release in the acidic environment. Subsequently, MSNs are coated with silver nanoparticles stabilized polyethyleneimine (PEI-SNP) to act against drug-resistant (MDR) bacterial strains. Silver ions released from SNP are capable of sensitizing the resistant strains and facilitate the generation of free radicals capable of damaging the cell components. In addition, copper ions in the framework are also capable of generating free radicals through Fenton-like reaction. Furthermore, the nanoparticles are well-characterized physically, and various antibacterial efficacious tests against isolated multidrug resistant bacterial strain were highly commendable. However, this formulation has no significant toxic effect on normal mammalian fibroblast cells accounting its high biocompatibility. These MSN trio-hybrids, i.e., SNP, tetracycline, and copper ions result in synergistic effects, and their advancement could bypass resistance and allow synergism for effective treatment of antibiotic clinically.

Keywords: Antibiotic Resistance, Silver, Copper, tetracycline, mesoporous silica nanoparticles, Ph-sensitive release, polyethyleneimine

Procedia PDF Downloads 60
7 Characteristics of Acute Bacterial Prostatitis in Elderly Patients Attended in the Emergency Department

Authors: Carles Ferré, Ferran Llopis, Javier Jacob, Jordi Giol, Xavier Palom, Ignasi Bardés

Abstract:

Objective: To analyze the characteristics of acute bacterial prostatitis (ABP) in elderly patients attended in the emergency department (ED). Methods: Observational and cohort study with prospective follow-up including patients with ABP presenting to the ED from January-December 2012. Data were collected for demographic variables, comorbidities, clinical and microbiological findings, treatment, outcome, and reconsultation at 30 days follow up. Findings were compared between patients ≥ 75 years (study group) and < 75 years (control group). Results: During the study period 241 episodes of ABP were included for analysis. Mean age was 62,9 ± 16 years, and 64 (26.5%) were ≥ 75 years old. A history of prostate adenoma was reported in 54 cases (22,4%), diabetes mellitus in 47 patients (19,5%) and prior manipulation of the lower urinary tract in 40 (17%). Mean symptoms duration was 3.38 ± 4.04 days, voiding symptoms were present in 176 cases (73%) and fever in 154 (64%). From 216 urine cultures, 128 were positive (59%) and 24 (17,6%) out of 136 blood cultures. Escherichia coli was the main pathogen in 58.6% of urine cultures and 64% of blood cultures (with resistant strains to fluoroquinolones in 27,7%, cotrimoxazole in 22,9% and amoxicillin/clavulanic in 27.7% of cases). Seventy patients (29%) were admitted to the hospital, and 3 died. At 30-day follow-up, 29 patients (12%) returned to the ED. In the bivariate analysis previous manipulation of the urinary tract, history of cancer, previous antibiotic treatment, resistant E. coli strains to amoxicillin-clavulanate and ciprofloxacin and extended spectrum beta-lactamase (ESBL) producers, renal impairment, and admission to the hospital were significantly more frequent (p < 0.05) among patients ≥ 75 years compared to those younger than 75 years. Conclusions: Ciprofloxacin and amoxicillin-clavulanate appear not to be good options for the empiric treatment of ABP for patients ≥ 75 years given the drug-resistance pattern in our series, and the proportion of ESBL-producing strains of E. coli should be taken into account. Awaiting bacteria identification and antibiogram from urine and/or blood cultures, treatment on an inpatient basis should be considered in older patients with ABP.

Keywords: Emergency, Antibiotic Resistance, elderly patients, acute bacterial prostatitits

Procedia PDF Downloads 262
6 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria

Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh

Abstract:

Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.

Keywords: Hydrogen Sulfide, Mobile app, Antibiotic Resistance, live and dead bacteria

Procedia PDF Downloads 32
5 Analysis of Taxonomic Compositions, Metabolic Pathways and Antibiotic Resistance Genes in Fish Gut Microbiome by Shotgun Metagenomics

Authors: Anuj Tyagi, Balwinder Singh, Naveen Kumar B. T., Niraj K. Singh

Abstract:

Characterization of diverse microbial communities in specific environment plays a crucial role in the better understanding of their functional relationship with the ecosystem. It is now well established that gut microbiome of fish is not the simple replication of microbiota of surrounding local habitat, and extensive species, dietary, physiological and metabolic variations in fishes may have a significant impact on its composition. Moreover, overuse of antibiotics in human, veterinary and aquaculture medicine has led to rapid emergence and propagation of antibiotic resistance genes (ARGs) in the aquatic environment. Microbial communities harboring specific ARGs not only get a preferential edge during selective antibiotic exposure but also possess the significant risk of ARGs transfer to other non-resistance bacteria within the confined environments. This phenomenon may lead to the emergence of habitat-specific microbial resistomes and subsequent emergence of virulent antibiotic-resistant pathogens with severe fish and consumer health consequences. In this study, gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. Metagenomic DNA, extracted from the fish gut, was subjected to sequencing on Illumina NextSeq to generate paired-end (PE) 2 x 150 bp sequencing reads. After the QC of raw sequencing data by Trimmomatic, taxonomic analysis by Kraken2 taxonomic sequence classification system revealed the presence of 36 phyla, 326 families and 985 genera in the fish gut microbiome. At phylum level, Proteobacteria accounted for more than three-fourths of total bacterial populations followed by Actinobacteria (14%) and Cyanobacteria (3%). Commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) were found to be very less prevalent in fish gut. After sequencing data assembly by MEGAHIT v1.1.2 assembler and PROKKA automated analysis pipeline, pathway analysis revealed the presence of 1,608 Metacyc pathways in the fish gut microbiome. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy-metabolism (4%) and fermentation (2%). Almost one-third (33%) of biosynthesis pathways were involved in the synthesis of secondary metabolites. Metabolic pathways for the biosynthesis of 35 antibiotic types were also present, and these accounted for 5% of overall metabolic pathways in the fish gut microbiome. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. More than 90% ARGs in fish gut microbiome were against beta-lactams (penicillins, cephalosporins, penems, and monobactams). Resistance against tetracycline, macrolides, fluoroquinolones, and phenicols ranged from 0.7% to 1.3%. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment.

Keywords: Microbial diversity, Metabolic Pathways, Antibiotic Resistance, fish gut

Procedia PDF Downloads 20
4 Methicillin Resistant Staphylococcus aureus Specific Bacteriophage Isolation from Sewage Treatment Plant and in vivo Analysis of Phage Efficiency in Swiss Albino Mice

Authors: Pratibha Goyal, Nupur Mathur, Anuradha Singh

Abstract:

Antibiotic resistance is the worldwide threat to human health in this century. Excessive use of antibiotic after their discovery in 1940 makes certain bacteria to become resistant against antibiotics. Most common antibiotic-resistant bacteria include Staphylococcus aureus, Salmonella typhi, E.coli, Klebsiella pneumonia, and Streptococcus pneumonia. Among all Staphylococcus resistant strain called Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for several lives threatening infection in human commonly found in the hospital environment. Our study aimed to isolate bacteriophage against MRSA from the hospital sewage treatment plant and to analyze its efficiency In Vivo in Swiss albino mice model. Sewage sample for the isolation of bacteriophages was collected from SDMH hospital sewage treatment plant in Jaipur. Bacteriophages isolated by the use of enrichment technique and after characterization, isolated phages used to determine phage treatment efficiency in mice. Mice model used to check the safety and suitability of phage application in human need which in turn directly support the use of natural bacteriophage rather than synthetic chemical to kill pathogens. Results show the plaque formation in-vitro and recovery of MRSA infected mice during the experiment. Favorable lytic efficiency determination of MRSA and Salmonella presents a natural way to treat lethal infections caused by Multidrug-resistant bacteria by using their natural host-pathogen relationship.

Keywords: Pathogens, Bacteriophages, Antibiotic Resistance, Phage Therapy, salmonella typhi, methicillin resistance Staphylococcus aureus

Procedia PDF Downloads 10
3 Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents

Authors: Thobela Conco, Sheena Kumari, Chika Nnadozie, Mahmoud Nasr, Thor A. Stenström, Mushal Ali, Arshad Ismail, Faizal Bux

Abstract:

The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients.

Keywords: wastewater, Antibiotic Resistance, Wastewater Treatment Plants, mobile genetic elements

Procedia PDF Downloads 6
2 Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification

Authors: Marta Skwarecka, Patrycja Bloch, Rafal Walkusz, Oliwia Urbanowicz, Grzegorz Zielinski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit.

Keywords: Respiratory infections, Antibiotic Resistance, diagnostic test, Streptococci

Procedia PDF Downloads 1
1 A Program of Data Analysis on the Possible State of the Antibiotic Resistance in Bangladesh Environment in 2019

Authors: S. D. Kadir

Abstract:

Background: Antibiotics have always been at the centrum of the revolution of modern microbiology. Micro-organisms and its pathogenicity, resistant organisms, inappropriate or over usage of various types of antibiotic agents are fuelled multidrug-resistant pathogenic organisms. Our present time review report mainly focuses on the therapeutic condition of antibiotic resistance and the possible roots behind the development of antibiotic resistance in Bangladesh in 2019. Methodology: The systemic review has progressed through a series of research analyses on various manuscripts published on Google Scholar, PubMed, Research Gate, and collected relevant information from established popular healthcare and diagnostic center and its subdivisions all over Bangladesh. Our research analysis on the possible assurance of antibiotic resistance been ensured by the selective medical reports and on random assay on the extent of individual antibiotic in 2019. Results: 5 research articles, 50 medical report summary, and around 5 patients have been interviewed while going through the estimation process. We have prioritized research articles where the research analysis been performed by the appropriate use of the Kirby-Bauer method. Kirby-Bauer technique is preferred as it provides greater efficiency, ensures lower performance expenditure, and supplies greater convenience and simplification in the application. In most of the reviews, clinical and laboratory standards institute guidelines were strictly followed. Most of our reports indicate significant resistance shown by the Beta-lactam drugs. Specifically by the derivatives of Penicillin's, Cephalosporin's (rare use of the first generation Cephalosporin and overuse of the second and third generation of Cephalosporin and misuse of the fourth generation of Cephalosporin), which are responsible for almost 67 percent of the bacterial resistance. Moreover, approximately 20 percent of the resistance was due to the fact of drug pumping from the bacterial cell by tetracycline and sulphonamides and their derivatives. Conclusion: 90 percent of the approximate antibiotic resistance is due to the usage of relative and true broad-spectrum antibiotics. The environment has been created by the following circumstances where; the excessive usage of broad-spectrum antibiotics had led to a condition where the disruption of native bacteria and a series of anti-microbial resistance causing a disturbance of the surrounding environments in medium, leading to a state of super-infection.

Keywords: Microbiology, Antibiotics, Antibiotic Resistance, Kirby Bauer method

Procedia PDF Downloads 1