Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21

ABAQUS Related Abstracts

21 Study the Behavior of Different Composite Short Columns (DST) with Prismatic Sections under Bending Load

Authors: M. Reza Bagerzadeh Karimi, V. Sadeghi Balkanlou, A. Hasanbakloo, B. Bagheri Azar

Abstract:

In this paper, the behavior of different types of DST columns has been studied under bending load. Briefly, composite columns consist of an internal carbon steel tube and an external stainless steel wall that the between the walls are filled with concrete. Composite columns are expected to combine the advantages of all three materials and have the advantage of high flexural stiffness of CFDST columns. In this research, ABAQUS software is used for finite element analysis then the results of ultimate strength of the composite sections are illustrated.

Keywords: stainless steel, DST, carbon steel, ABAQUS, straigh columns, tapered columns

Procedia PDF Downloads 222
20 Finite Element Analysis of Low-Velocity Impact Damage on Stiffened Composite Panels

Authors: Xuan Sun, Mingbo Tong

Abstract:

To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures.

Keywords: Low-Velocity Impact, ABAQUS, stiffened, impact energy

Procedia PDF Downloads 481
19 Computation of Stress Intensity Factor Using Extended Finite Element Method

Authors: Mahmoudi Noureddine, Bouregba Rachid

Abstract:

In this paper the stress intensity factors of a slant-cracked plate of AISI 304 stainless steel, have been calculated using extended finite element method and finite element method (FEM) in ABAQUS software, the results were compared with theoretical values.

Keywords: stainless steel, ABAQUS, stress intensity factors, extended finite element method

Procedia PDF Downloads 425
18 Numerical Simulation of the Bond Behavior Between Concrete and Steel Reinforcing Bars in Specialty Concrete

Authors: Camille A. Issa, Omar Masri

Abstract:

In the study, the commercial finite element software Abaqus was used to develop a three-dimensional nonlinear finite element model capable of simulating the pull-out test of reinforcing bars from underwater concrete. The results of thirty-two pull-out tests that have different parameters were implemented in the software to study the effect of the concrete cover, the bar size, the use of stirrups, and the compressive strength of concrete. The interaction properties used in the model provided accurate results in comparison with the experimental bond-slip results, thus the model has successfully simulated the pull-out test. The results of the finite element model are used to better understand and visualize the distribution of stresses in each component of the model, and to study the effect of the various parameters used in this study including the role of the stirrups in preventing the stress from reaching to the sides of the specimens.

Keywords: Underwater Concrete, bond strength, pull-out test, ABAQUS, nonlinear finite element analysis

Procedia PDF Downloads 297
17 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

The plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 10mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to the plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, the numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: Dynamic Analysis, ABAQUS, impulsive loaded plates, material nonlinearity

Procedia PDF Downloads 362
16 Influence of Foundation Size on Seismic Response of Mid-rise Buildings Considering Soil-Structure-Interaction

Authors: Quoc Van Nguyen, Behzad Fatahi, Aslan S. Hokmabadi

Abstract:

Performance based seismic design is a modern approach to earthquake-resistant design shifting emphasis from “strength” to “performance”. Soil-Structure Interaction (SSI) can influence the performance level of structures significantly. In this paper, a fifteen storey moment resisting frame sitting on a shallow foundation (footing) with different sizes is simulated numerically using ABAQUS software. The developed three dimensional numerical simulation accounts for nonlinear behaviour of the soil medium by considering the variation of soil stiffness and damping as a function of developed shear strain in the soil elements during earthquake. Elastic-perfectly plastic model is adopted to simulate piles and structural elements. Quiet boundary conditions are assigned to the numerical model and appropriate interface elements, capable of modelling sliding and separation between the foundation and soil elements, are considered. Numerical results in terms of base shear, lateral deformations, and inter-storey drifts of the structure are compared for the cases of soil-structure interaction system with different foundation sizes as well as fixed base condition (excluding SSI). It can be concluded that conventional design procedures excluding SSI may result in aggressive design. Moreover, the size of the foundation can influence the dynamic characteristics and seismic response of the building due to SSI and should therefore be given careful consideration in order to ensure a safe and cost effective seismic design.

Keywords: Seismic Response, ABAQUS, shallow foundation, soil-structure-interaction, rayleigh damping

Procedia PDF Downloads 392
15 Cost Effectiveness and Performance Study of Perpetual Pavement Using ABAQUS

Authors: Mansour Fakhri, Monire Zokaei

Abstract:

Where there are many demolitions on conventional asphalt pavements, heavy costs are paid to repair and reconstruct the pavement roads annually. Recently some research has been done in order to increase the pavement life. Perpetual pavement is regarded as one of them which can improve the pavement life and minimize the maintenance activity and cost. In this research, ABAQUS which is a finite element software is implemented for analyzing and simulation of perpetual pavement. Viscoelastic model of material is used and loading wheel is considered to be dynamic. Effect of different parameters on pavement function has been considered. Because of high primary cost these pavements are not widely used. In this regard, life cost analysis was also carried out to compare perpetual pavement to conventional asphalt concrete pavement. It was concluded that although the initial cost of perpetual pavement is higher than that of conventional asphalt pavement, life cycle cost analysis during 50 years of service life showed that the performance of this pavement is better and the whole life cost of that is less.

Keywords: ABAQUS, lifecycle cost analysis, mechanistic empirical, perpetual pavement

Procedia PDF Downloads 226
14 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Nader H. Ghareeb, Sayed M. Soleimani, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Finite element modeling, blast loading, ABAQUS, steel honeycomb sandwich panel

Procedia PDF Downloads 224
13 Investigation of the Corroded Steel Beam

Authors: Hesamaddin Khoshnoodi, Ahmad Rahbar Ranji

Abstract:

Corrosion in steel structures is one of the most important issues that should be considered in designing and constructing. Corrosion reduces the cross section and load capacity of element and leads to costly damage of structures. In this paper, the corrosion has been modeled for moment stresses. Moreover, the steel beam has been modeled using ABAQUS advanced finite element software. The conclusions of this study demonstrated that the displacement of the analyzed composite steel girder bridge might increase.

Keywords: Corrosion, deformation, ABAQUS, steel beam

Procedia PDF Downloads 185
12 Numerical Analysis of Prefabricated Horizontal Drain Induced Consolidation Using ABAQUS

Authors: Anjana R. Menon, Anjana Bhasi

Abstract:

This paper deals with the numerical analysis of Prefabricated Horizontal Drain (PHD) induced consolidation of clayey deposits, using ABAQUS. PHDs are much like Prefabricated Vertical Drains (PVDs) installed in horizontal layers, used mainly for enhancing the consolidation of clayey fill embankments, and dredged mud deposits. The efficiency of the system depends mainly on the spacing and layout of the drain. Hence, two spacing related parameters are defined, namely WH (width to horizontal spacing ratio) and VH (vertical to horizontal spacing ratio), and the finite element models are developed based on plane strain unit cell conditions under various combinations of these parameters. The analysis results, in terms of degree of consolidation (U), are compared with the established theories. Based on the analysis, a set of equations are proposed to analyse the PHD induced consolidation. The proposed method is found to be reasonably accurate. Further, the effect of PHDs at different spacing ratios, in accelerating consolidation of a clayey embankment fill is analysed in terms of pore pressure dissipation rate, and settlement. The PHD is found to accelerate the rate of pore pressure dissipation by more than 50%, thus reducing the time for final settlement significantly.

Keywords: Plane Strain, consolidation, ABAQUS, prefabricated horizontal drain

Procedia PDF Downloads 211
11 Soil Arching Effect in Columnar Embankments: A Numerical Study

Authors: Anjana Bhasi, Riya Roy

Abstract:

Column-supported embankments provide a practical and efficient solution for construction on soft soil due to the low cost and short construction times. In the recent years, geosynthetic have been used in combination with column systems to support embankments. The load transfer mechanism in these systems is a combination of soil arching effect, which occurs between columns and membrane effect of the geosynthetic. This paper aims at the study of soil arching effect on columnar embankments using finite element software, ABAQUS. An axisymmetric finite element model is generated and using this model, parametric studies are carried out. Thus the effects of various factors such as height of embankment fill, elastic modulus of pile and tensile stiffness of geosynthetic, on soil arching have been studied. The development of negative skin friction along the pile-soil interface have also been studied and the results obtained from this study are compared with the current design methods.

Keywords: Geosynthetic, ABAQUS, negative skin friction, soil arching

Procedia PDF Downloads 241
10 Submodeling of Mega-Shell Reinforced Concrete Solar Chimneys

Authors: Areeg Shermaddo, Abedulgader Baktheer

Abstract:

Solar updraft power plants (SUPPs) made from reinforced concrete (RC) are an innovative technology to generate solar electricity. An up to 1000 m high chimney represents the major part of each SUPP ensuring the updraft of the warmed air from the ground. Numerical simulation of nonlinear behavior of such large mega shell concrete structures is a challenging task, and computationally expensive. A general finite element approach to simulate reinforced concrete bearing behavior is presented and verified on a simply supported beam, as well as the technique of submodeling. The verified numerical approach is extended and consecutively transferred to a more complex chimney structure of a SUPP. The obtained results proved the reliability of submodeling technique in analyzing critical regions of simple and complex mega concrete structures with high accuracy and dramatic decrease in the computation time.

Keywords: Nonlinear Analysis, ABAQUS, submodeling, SUPP

Procedia PDF Downloads 131
9 Response of Solar Updraft Power Plants Incorporating Material Nonlinearity

Authors: Areeg Shermaddo

Abstract:

Solar updraft power plants (SUPP) provide a great potential for green and environmentally friendly renewable power generation. An up to 1000 m high chimney represents one of the major parts of each SUPP, which consist of the main shell structure and the stiffening rings. Including the nonlinear material behavior in a simulation of the chimney is computationally a demanding task. However, allowing the formation of cracking in concrete leads to a more economical design of the structure. In this work, an FE model of a SUPP is presented incorporating the nonlinear material behavior. The effect of wind loading intensity on the structural response is explored. Furthermore, the influence of the stiffness of the ring beams on the global behavior is as well investigated. The obtained results indicate that the minimum reinforcement is capable of carrying the tensile stresses provided that the ring beams are rather stiff.

Keywords: Nonlinear Analysis, ABAQUS, SUPP, ring beams

Procedia PDF Downloads 105
8 Implementation and Validation of a Damage-Friction Constitutive Model for Concrete

Authors: M. Ould Ouali, N. E. Hannachi, L. Madouni

Abstract:

Two constitutive models for concrete are available in ABAQUS/Explicit, the Brittle Cracking Model and the Concrete Damaged Plasticity Model, and their suitability and limitations are well known. The aim of the present paper is to implement a damage-friction concrete constitutive model and to evaluate the performance of this model by comparing the predicted response with experimental data. The constitutive formulation of this material model is reviewed. In order to have consistent results, the parameter identification and calibration for the model have been performed. Several numerical simulations are presented in this paper, whose results allow for validating the capability of the proposed model for reproducing the typical nonlinear performances of concrete structures under different monotonic and cyclic load conditions. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated model.

Keywords: Concrete, Numerical Simulation, constitutive model, ABAQUS

Procedia PDF Downloads 135
7 Fluid Structure Interaction Study between Ahead and Angled Impact of AGM 88 Missile Entering Relatively High Viscous Fluid for K-Omega Turbulence Model

Authors: Abu Afree Andalib, Rafiur Rahman, Md Mezbah Uddin

Abstract:

The main objective of this work is to anatomize on the various parameters of AGM 88 missile anatomized using FSI module in Ansys. Computational fluid dynamics is used for the study of fluid flow pattern and fluidic phenomenon such as drag, pressure force, energy dissipation and shockwave distribution in water. Using finite element analysis module of Ansys, structural parameters such as stress and stress density, localization point, deflection, force propagation is determined. Separate analysis on structural parameters is done on Abacus. State of the art coupling module is used for FSI analysis. Fine mesh is considered in every case for better result during simulation according to computational machine power. The result of the above-mentioned parameters is analyzed and compared for two phases using graphical representation. The result of Ansys and Abaqus are also showed. Computational Fluid Dynamics and Finite Element analyses and subsequently the Fluid-Structure Interaction (FSI) technique is being considered. Finite volume method and finite element method are being considered for modelling fluid flow and structural parameters analysis. Feasible boundary conditions are also utilized in the research. Significant change in the interaction and interference pattern while the impact was found. Theoretically as well as according to simulation angled condition was found with higher impact.

Keywords: Structural Analysis, fluid flow, Impact, Missile, ANSYS, turbulence model, ABAQUS, CFD (Computational Fluid Dynamics), FSI (Fluid Surface Interaction), high viscous fluid, FEM (Finite Element Analysis), FVM (Finite Volume Method), fluid pattern, AGM-88, meshing, k-omega

Procedia PDF Downloads 245
6 A Finite Element Based Predictive Stone Lofting Simulation Methodology for Automotive Vehicles

Authors: Gaurav Bisht, Rahul Rathnakumar, Ravikumar Duggirala

Abstract:

Predictive simulations are one of the key focus areas in safety-critical industries such as aerospace and high-performance automotive engineering. The stone-chipping study is one such effort taken up by the industry to predict and evaluate the damage caused due to gravel impact on vehicles. This paper describes a finite elements based method that can simulate the ejection of gravel chips from a vehicle tire. The FE simulations were used to obtain the initial ejection velocity of the stones for various driving conditions using a computational contact mechanics approach. To verify the accuracy of the tire model, several parametric studies were conducted. The FE simulations resulted in stone loft velocities ranging from 0–8 m/s, regardless of tire speed. The stress on the tire at the instant of initial contact with the stone increased linearly with vehicle speed. Mesh convergence studies indicated that a highly resolved tire mesh tends to result in better momentum transfer between the tire and the stone. A fine tire mesh also showed a linearly increasing relationship between the tire forward speed and stone lofting speed, which was not observed in coarser meshes. However, it also highlighted a potential challenge, in that the ejection velocity vector of the stone seemed to be sensitive to the mesh, owing to the FE-based contact mechanical formulation of the problem.

Keywords: Contact Mechanics, ABAQUS, foreign object debris, stone chipping

Procedia PDF Downloads 134
5 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior

Authors: Burak Bal

Abstract:

Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.

Keywords: Microstructure, ABAQUS, crystal plasticity finite element modeling, Dream.3D

Procedia PDF Downloads 22
4 The Structural Behavior of Fiber Reinforced Lightweight Concrete Beams: An Analytical Approach

Authors: Jubee Varghese, Pouria Hafiz

Abstract:

Increased use of lightweight concrete in the construction industry is mainly due to its reduction in the weight of the structural elements, which in turn reduces the cost of production, transportation, and the overall project cost. However, the structural application of these lightweight concrete structures is limited due to its reduced density. Hence, further investigations are in progress to study the effect of fiber inclusion in improving the mechanical properties of lightweight concrete. Incorporating structural steel fibers, in general, enhances the performance of concrete and increases its durability by minimizing its potential to cracking and providing crack arresting mechanism. In this research, Geometric and Materially Non-linear Analysis (GMNA) was conducted for Finite Element Modelling using a software known as ABAQUS, to investigate the structural behavior of lightweight concrete with and without the addition of steel fibers and shear reinforcement. 21 finite element models of beams were created to study the effect of steel fibers based on three main parameters; fiber volume fraction (Vf = 0, 0.5 and 0.75%), shear span to depth ratio (a/d of 2, 3 and 4) and ratio of area of shear stirrups to spacing (As/s of 0.7, 1 and 1.6). The models created were validated with the previous experiment conducted by H.K. Kang et al. in 2011. It was seen that the lightweight fiber reinforcement can replace the use of fiber reinforced normal weight concrete as structural elements. The effect of an increase in steel fiber volume fraction is dominant for beams with higher shear span to depth ratio than for lower ratios. The effect of stirrups in the presence of fibers was very negligible; however; it provided extra confinement to the cracks by reducing the crack propagation and extra shear resistance than when compared to beams with no stirrups.

Keywords: Beams, Fiber-Reinforced Concrete, Steel Fibers, finite element, light weight, ABAQUS, shear span-depth ratio, steel-fiber volume fraction

Procedia PDF Downloads 8
3 Numerical Investigation of the Jacketing Method of Reinforced Concrete Column

Authors: N. Khelil, S. Boukais, A. Nekmouche, A. Kezmane

Abstract:

The first intent of this study is to develop a finite element model that can predict correctly the behavior of the reinforced concrete column. Second aim is to use the finite element model to investigate and evaluate the effect of the strengthening method by jacketing of the reinforced concrete column, by considering different interface contact between the old and the new concrete. Four models were evaluated, one by considering perfect contact, the other three models by using friction coefficient of 0.1, 0.3 and 0.5. The simulation was carried out by using Abaqus software. The obtained results show that the jacketing reinforcement led to significant increase of the global performance of the behavior of the simulated reinforced concrete column.

Keywords: Simulation, Strengthening, ABAQUS, jacketing, rienforced concrete column

Procedia PDF Downloads 1
2 Finite Element Modeling of Two-Phase Microstructure during Metal Cutting

Authors: Junior Nomani

Abstract:

This paper presents a novel approach to modelling the metal cutting of duplex stainless steels, a two-phase alloy regarded as a difficult-to-machine material. Calculation and control of shear strain and stresses during cutting are essential to achievement of ideal cutting conditions. Too low or too high leads to higher required cutting force or excessive heat generation causing premature tool wear failure. A 2D finite element cutting model was created based on electron backscatter diffraction (EBSD) data imagery of duplex microstructure. A mesh was generated using ‘object-oriented’ software OOF2 version V2.1.11, converting microstructural images to quadrilateral elements. A virtual workpiece was created on ABAQUS modelling software where a rigid body toolpiece advanced towards workpiece simulating chip formation, generating serrated edge chip formation cutting. Model results found calculated stress strain contour plots correlated well with similar finite element models tied with austenite stainless steel alloys. Virtual chip form profile is also similar compared experimental frozen machining chip samples. The output model data provides new insight description of strain behavior of two phase material on how it transitions from workpiece into the chip.

Keywords: duplex stainless steel, ABAQUS, chip formation, OOF2

Procedia PDF Downloads 1
1 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10mg alloy

Authors: Racholsan Raj Nirmal, B.S.V. Patnaik, R. Jayaganthan

Abstract:

The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage evolution and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1,1,10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed for 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m is used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It is observed that additively manufactured AlSi10Mg alloy exhibits relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys. The microstructural features of this alloy are used to substantiate the above deformation behaviour.

Keywords: Additive manufacturing, ABAQUS, AlSi10Mg, Johnson-Cook model

Procedia PDF Downloads 1