Conditions on Expressing a Matrix as a Sum of α-Involutions

Authors: Ric Joseph R. Murillo, Edna N. Gueco, Dennis I. Merino

Abstract: Let F be C or R, where C and R are the set of complex numbers and real numbers, respectively, and n be a natural number. An n-by-n matrix A over the field F is called an α-involutory matrix or an α-involution if there exists an α in the field such that the square of the matrix is equal to αI, where I is the n-by-n identity matrix. If α is a complex number or a nonnegative real number, then an n-by-n matrix A over the field F can be written as a sum of n-by-n α-involutory matrices over the field F if and only if the trace of that matrix is an integral multiple of the square root of α. Meanwhile, if α is a negative real number, then a $2n$-by-$2n$ matrix A over R can be written as a sum of $2n$-by-$2n$ α-involutory matrices over R if and only if the trace of the matrix is zero. Some other properties of α-involutory matrices are also determined.

Keywords: α-involutory Matrices, sum of α-involutory Matrices, Trace, Matrix Theory

Conference Title: ICLAA 2019: International Conference on Linear Algebra and Applications
Conference Location: London, United Kingdom
Conference Dates: January 21-22, 2019