An Improved Lower Bound for Minimal-Area Convex Cover for Closed Unit Curves

Abstract

Authors: S. Som-Am, B. Grechuk Abstract : Moser's worm problem is the unsolved problem in geometry which asks for the minimal area of a convex region on the plane which can cover all curves of unit length, assuming that curves may be rotated and translated to fit inside the region. We study a version of this problem asking for a minimal convex cover for closed unit curves. By combining geometric methods with numerical box's search algorithm, we show that any such cover should have an area at least 0.0975 . This improves the best previous lower bound of 0.096694 . In fact, we show that the minimal area of convex hull of circle, equilateral triangle, and rectangle of perimeter 1 is between 0.0975 and 0.09763 .

Keywords : Moser's worm problem, closed arcs, convex cover, minimal-area cover
Conference Title : ICCGCV 2018 : International Conference on Computational Geometry and Computer Vision
Conference Location : Vienna, Austria
Conference Dates: June 14-15, 2018

