Total Chromatic Number of Δ-Claw-Free 3-Degenerated Graphs

Authors : Wongsakorn Charoenpanitseri
Abstract : The total chromatic number \χ\"(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no incident or adjacent pair of elements receive the same color Let G be a graph with maximum degree \Δ(G). Considering a total coloring of G and focusing on a vertex with maximum degree. A vertex with maximum degree needs a color and all \Δ (G) edges incident to this vertex need more \Δ $(\mathrm{G})+1$ distinct colors. To color all vertices and all edges of G, it requires at least \Δ(G) +1 colors. That is, \χ\"(G) is at least \Δ(G) +1 . However, no one can find a graph G with the total chromatic number which is greater than $\& D e l t a ;(G)+2$. The Total Coloring Conjecture states that for every graph G, \χ\"(G) is at most \Δ(G) +2 . In this paper, we prove that the Total Coloring Conjectur for a \Δ-claw-free 3-degenerated graph. That is, we prove that the total chromatic number of every \Δ-claw-free 3-degenerated graph is at most \Δ(G) +2 .
Keywords : total colorings, the total chromatic number, 3-degenerated, CLAW-FREE
Conference Title : ICMF 2018 : International Conference on Mathematics and Finance
Conference Location : Venice, Italy
Conference Dates : April 12-13, 2018

