World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering Vol:11, No:12, 2017 ## Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear **Abstract :** High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (<f_{-3dB}) of 14 GHz and a resonance frequency (f_R) of 9.5 GHz at a bias current density (J_{bias}>(em>) of only 4.3 kA/cm², which corresponds to an improved f_{-3dB}², At higher and lower bias current densities, the f_{-3dB}², dem> J_{bias} ratio decreased to about 30 GHz², kA/cm², and 18 GHz², kA/cm², respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady ff_{-3dB}/ f_{-3dB}/ f_{-3dB}/ f<sub>-10% over the whole range of the bias current (1.3sub>-10% over the whole range of the bias current (1.3sub>-10% over the whole range of the bias current (1.3sub>-10% over the whole range of the bias current (1.3sub>-10% over the whole range of the bias current (1.3sub>-10% over the whole range of the bias current (1.3sub>-10% over the whole range of the bias current (1.3sub>-10% over the whole range of the bias current (1.3sub>-10% over the whole range of the bias current (1.3sub>-10% over the whole range of the bias current than the industrial bias current standard for reliability by 25%. **Keywords:** current density, high-speed VCSELs, modulation bandwidth, small-signal characteristics, thermal impedance, vertical-cavity surface-emitting lasers Conference Title: ICNED 2017: International Conference on Nanoelectronics Engineering and Devices Conference Location: Istanbul, Türkiye Conference Dates: December 21-22, 2017