The K-Distance Neighborhood Polynomial of a Graph

Abstract

Authors : Soner Nandappa D., Ahmed Mohammed Naji Abstract : In a graph $G=(\mathrm{V}, \mathrm{E})$, the distance from a vertex v to a vertex u is the length of shortest v to u path. The eccentricity $e(v)$ of v is the distance to a farthest vertex from v. The diameter diam(G) is the maximum eccentricity. The k-distance neighborhood of v, for $0 \leq k \leq e(v)$, is $N k(v)=\{u \in V(G): d(v, u)=k\}$. In this paper, we introduce a new distance degree based topological polynomial of a graph G is called a k - distance neighborhood polynomial, denoted $N k(G, x)$. It is a polynomial with the coefficient of the term k, for $0 \leq k \leq e(v)$, is the sum of the cardinalities of $N k(v)$ for every $v \in(G)$. Some properties of k - distance neighborhood polynomials are obtained. Exact formulas of the k - distance neighborhood polynomial for some well-known graphs, Cartesian product and join of graphs are presented.

Keywords : vertex degrees, distance in graphs, graph operation, Nk-polynomials
Conference Title : ICMAGT 2016 : International Conference on Mathematical Analysis and Graph Theory
Conference Location : San Francisco, United States
Conference Dates : September 26-27, 2016

