Non-Parametric Ranking of Triazine Derivatives based on Chromatographic Parameters

Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Milica Karadžić Banjac, Lidija Jevrić, Jasmina Anojčić

Abstract: The two groups of symmetrical triazine derivatives were analyzed applying sum of ranking differences (SRD) approach in terms of their chromatographic lipophilicity parameters determined in reversed-phase ultra-high performance liquid chromatography (RP-UHPLC) system. The first group of compounds (1-4) contained the triazines with two acyclic substituents, while the second group (5-8) included the compounds with two cyclic substituents (cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl). The compounds were analyzed applying two stationary phases (C18 and phenyl) and three mobile phases (methanol/water, methanol/acetonitrile/water and acetonitrile/water). The retention parameters considered in the ranking analysis are the following: capacity factors (logk and logk0), alternative lipophilicity parameter (C0) and the slope (S) of the dependence between the fraction of modifier in mobile phase (ϕ) and logk. SRD analysis was applied on the retention data normalized by min-max normalization method. The ranking was based on row average as a reference ranking. The SRD results were validated by 7-fold cross-validation approach. The results indicate that the compounds 1, 4 and 5 are the closest to the reference ranking, while the compounds 6, 2, 7 and 8 are far from the reference. The compound 3 is placed between these two groups. The compounds that are placed furthest from the average ranking have several retention parameters that significantly deviate from others, particularly compounds 7 and 8 that are the biggest molecules in the analyzed groups. The SRD analysis did not discriminate the compounds based on their substituents. Acknowledgement: The present research is supported by the project of Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina (Molecular engineering and chemometric tools: Towards safer and greener future, No. 002902513 2024 09418 003 000 000 001 04 002).

Keywords: chromatography, lipophilicity, pesticides, triazines

Conference Title: ICCCM 2025: International Conference on Computational Chemistry and Modelling

Conference Location : Malaga, Spain Conference Dates : September 06-07, 2025