The Contribution of Shell Correction of Targets ²⁷₁₃Al, ⁶³₂₉Cu, ¹⁹⁷₇₉Au in the Calculation of Stopping Power of Charged Particles ¹H, ⁴He, ⁷Li, ¹²C, ¹⁶O for Speeds V≥V₀Z₁²/₃

Authors: Foul Sihem, Chekirine Mamoun, Sidoumou Mohamed

Abstract : The modified Bethe-Bloch formula depends on several corrective terms; the most important of these is undoubtedly the shell correction, especially for energies of a few MeV/u and whose contribution can exceed 10% of the stopping power. The charge state of the incident ions also influences this latter, particularly heavy ions at intermediates speeds $2Z_1V_0 \ge V \ge V_0Z_1^2/3$. In the present work, we calculated the shell corrections of the targets $^{27}_{13}$ Al, $^{63}_{29}$ Cu, $^{197}_{79}$ Au, the effective charge and the stopping power of the 1 H, 4 He, 7 Li, 12 C, 16 O ions by using the Bethe-Bloch formula at energies ranging from 1 to 100 MeV/ u. The stopping power values of the 1 H, 4 He, 7 Li, 12 C, 16 O ions in the targets $^{27}_{13}$ Al, $^{63}_{29}$ Cu, $^{197}_{79}$ Au were compared to those generated by the SRIM-2013, PSTAR, ASTAR, and MSTAR calculation codes. In this study, we found that the contribution of the shell corrections could reach 13% of stopping power, especially for medium and heavy targets at energies of a few MeV/u.

Conference Title: ICNST 2023: International Conference on Nuclear Science and Technology

Conference Location: Amsterdam, Netherlands Conference Dates: February 06-07, 2023