Electrical Transport in Bi$_{1.5}$Sb$_{1.5}$Te$_{1.5}$Se$_{1.5}$ /α-RuCl$_3$ Heterostructure Nanodevices

Authors: Shoubhik Mandal, Debarghya Mallick, Abhishek Banerjee, R. Ganesan, P. S. Anil Kumar

Abstract: We report magnetotransport measurements in Bi$_{1.5}$Sb$_{1.5}$Te$_{1.5}$Se$_{1.5}$/α-RuCl$_3$ heterostructure nanodevices. Bi$_{1.5}$Sb$_{1.5}$Te$_{1.5}$Se$_{1.5}$ (BSTS) is a strong three-dimensional topological insulator (3D-TI) that hosts conducting topological surface states (TSS) enclosing an insulating bulk. α-RuCl$_3$ (namely, RuCl$_3$) is an anti-ferromagnet that is predicted to behave as a Kitaev-like quantum spin liquid carrying Majorana excitations. Temperature (T)-dependent resistivity measurements show the interplay between parallel bulk and surface transport channels. At T < 150 K, surface state transport dominates over bulk transport. Multi-channel weak anti-localization (WAL) is observed, as a sharp cusp in the magnetoconductivity, indicating strong spin-orbit coupling. The presence of top and bottom topological surface states (TSS), including a pair of electrically coupled Rashba surface states (RSS), are indicated. Non-linear Hall effect, explained by a two-band model, further supports this interpretation. Finally, a low-T logarithmic resistance upturn is analyzed using the Lu-Shen model, supporting the presence of gapless surface states with a π Berry phase.

Keywords: topological materials, electrical transport, Lu-Shen model, quantum spin liquid

Conference Title: ICTITS 2022: International Conference on Topological Insulators and Topological Superconductors
Conference Location: Barcelona, Spain
Conference Dates: June 09-10, 2022