World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering Vol:15, No:09, 2021

Landfill Leachate Wastewater Treatment by Fenton Process

Authors : Rewadee Anuwattana, Pattamaphorn Phuangngamphan, Narumon Soparatana, Supinya Sutthima, Worapong Pattayawan, Saroj Klangkongsub, Songkiat Roddang, Pluek Wongpanich

Abstract : The leachate wastewater is high contaminant water; hence it needs to be treated. The objective of this research was to determine the Chemical Oxygen Demand (COD) concentration, Phosphate (PO_4^{3-}), Ammonia (PO_4^{3-}), Ammonia (PO_4^{3-}) and color in leachate wastewater in the landfill area. The experiments were carried out in the optimum condition by PO_4^{3-} , the Fenton reagent dosage (concentration of dosing PO_4^{2-} and PO_4^{2-}). The optimum PO_4^{3-} is a positive of this research wastewater (PO_4^{3-}). The optimum PO_4^{3-} is a positive of this research wastewater (PO_4^{3-}). The optimum PO_4^{3-} is a positive of this research wastewater (PO_4^{3-}). The optimum PO_4^{3-} is a positive of this research wastewater (PO_4^{3-}) in the results, the PO_4^{3-} is a positive of this research wastewater (PO_4^{3-}). The optimum PO_4^{3-} is a positive of this research wastewater (PO_4^{3-}) in the results, the PO_4^{3-} is a positive of this research wastewater (PO_4^{3-}). The optimum PO_4^{3-} is a positive of this research wastewater (PO_4^{3-}) in the results, the PO_4^{3-} is a positive of this research wastewater (PO_4^{3-}). The optimum PO_4^{3-} is a positive of this research wastewater (PO_4^{3-}) in the results of the optimum condition of th

Keywords: landfill leachate treatment, open dumpsite, Fenton process, wastewater treatment

Conference Title: ICAEB 2021: International Conference on Advanced Environmental Biotechnology

Conference Location : Paris, France **Conference Dates :** September 20-21, 2021