Potentiostatic Growth of Hazenite Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K₂HPO₄/0.1 M Na₂HPO₄ Solution

Authors: Liping Wu, Durga Bhakta Pokharel, Junhua Dong, Changgang Wang, Lin Zhao, Wei Ke, Nan Chen

Abstract : Hazenite conversion coating was deposited on AZ31 Mg alloy in a deaerated phosphate solution containing 0.1 M K_2HPO_4 and 0.1 M Na_2HPO_4 ($Na_{0.1}KO_{0.1}$) with pH 9 at -0.8 V. The coating mechanism of hazenite was elucidated by in situ potentiostatic current decay, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The volume of H_2 evolved during potentiostatic polarization was measured by a gas collection apparatus. The degradation resistance of the hazenite coating was evaluated in simulated body fluid (SBF) at 37°C by using potentiodynamic polarization (PDP). The results showed that amorphous $Mg(OH)_2$ was deposited first, followed by the transformation of $Mg(OH)_2$ to amorphous $MgHPO_4$, subsequently the conversion of $MgHPO_4$ to crystallized K-struvite (KMgPO $_4$ ·6H $_2$ O), finally the crystallization of crystallized hazenite ($NaKMg_2(PO_4)_2$ ·14H $_2$ O). The deposited coating was composed of four layers where the inner layer is comprised of $Mg(OH)_2$, the middle layer of $Mg(OH)_2$ and $MgHPO_4$, the top layer of $Mg(OH)_2$, $MgHPO_4$ and K-struvite, the topmost layer of $Mg(OH)_2$, $MgHPO_4$, K-struvite and hazenite ($NaKMg_2(PO_4)_2$ ·14H $_2$ O). The PD results showed that the hazenite coating decreased the corrosion rate by two orders of magnitude.

Keywords: magnesium alloy, potentiostatic technique, hazenite, mineral conversion coating **Conference Title:** ICMAC 2019: International Conference on Mobility, Analytics and Cloud

Conference Location : New York, United States **Conference Dates :** December 09-10, 2019