Method Development and Validation for the Determination of Cefixime in Pure and Commercial Dosage Forms by Specrophotometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Method Development and Validation for the Determination of Cefixime in Pure and Commercial Dosage Forms by Specrophotometry

Authors: S. N. H. Azmi, B. Iqbal, J. K. Al Mamari, K. A. Al Hattali, W. N. Al Hadhrami

Abstract:

A simple, accurate and precise direct spectrophotometric method has been developed for the determination of cefixime in tablets and capsules. The method is based on the reaction of cefixime with a mixture of potassium iodide and potassium iodate to form yellow coloured product in ethanol-distilled water medium at room temperature which absorbed maximally at 352 nm. The factors affecting the reaction product were carefully studied and optimized. The validation parameters based on International Conference on Harmonisation (ICH, USA) guidelines were followed. The effect of common excipients used as additives has been tested and the tolerance limit was calculated for the determination of cefixime. Beer’s law is obeyed in the concentration range of 4 – 24 ug mL-1 with apparent molar absorptivity of 1.52 × 104 L mol-1cm-1 and Sandell’s sensitivity of 0.033 ug/cm2/ 0.001 absorbance unit. The limits of detection and quantitation for the proposed method are 0.32 and 1.06 ug mL-1, respectively. The proposed method has been successfully applied for the determination of cefixime in pharmaceutical formulations. The results obtained by the proposed method were statistically compared with the reference method using t- and F- values and found no significant difference between the two methods. The proposed method can be used as an alternate method for routine quality control analysis of cefixime in pharmaceutical formulations.

Keywords: Spectrophotometry, cefixime, validation, pharmaceutical formulations.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096675

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3111

References:


[1] British Pharmacopoeia, vol. I, Her Majesty Stationary Office, London, UK, 2009, p. 1139.
[2] F. Meng, X. Chen, Y. Zeng and D. Zhong, “Sensitive liquid chromatography-tandem mass spectrometry method for the determination of cefixime in human plasma: application to a pharmacokinetic study,” J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., vol. 819, p. 277, 2005.
[3] K. A. Raj, D. Yadav, D. Yadav, C. Prabu and S. Manikantan, “Determination of cefixime trihydrate and cefuroxime axetil in bulk drug and pharmaceutical dosage forms by HPLC,” Int. J. Chemtech. Res., vol. 2, p. 334, 2010.
[4] D. Zendelovska, T. Stafilov and P. Miloševski, “High-Performance liquid chromatographic method for determination of cefixime and cefotaxime in human plasma,” Bull. Chem. Technol. Macedonia, vol. 22, pp. 39-45, 2003.
[5] E. H. K. Adam, A. E. M. Saeed and I. E. Barakat, “Development and validation of a high performance liquid chromatography method for determination of cefixime trihydrate and its degraded products formed under stress condition of UV light,” Int. J. Pharm. Sci. Res. vol. 3, p. 469, 2012.
[6] K. Kathiresan, R. Murugan. M. S. Hameed, K. G. Inimai and T. Kanyadhara, “Analytical method development and validation of cefixime and dicloxacillin tablets by RP-HPLC,” Rasayan J. Chem., vol. 2, pp. 588, 2010.
[7] K. S. Khandagle, S. V. Gandhi, P. B. Deshpande, A. N. Kale and P. R. Deshmukh, “High performance thin layer chromatographic determination of cefixime and ofloxacin in combined tablet dosage form,” J. Chem. Pharm. Res., vol. 2, p. 92, 2012.
[8] M. M. Deshpandea, V. S. Kastureb and S. A, Gosavib, “Application of HPLC and HPTLC for the simultaneous determination of cefixime trihydrate and ambroxol hydrochloride in pharmaceutical dosage form,” Eurasian J. Anal. Chem. vol. 5, p. 227, 2010.
[9] V. Shah and H. Raj, “Development and validation of derivative spectroscopic method for simultaneous estimation of cefixime trihydrate and azithromycin dihydrate in combined dosage form,” Int. J. Pharm. Sci. Res. vol. 3, p. 1753, 2012.
[10] R. Jain, V. K. Gupta and N. Jadon, “Voltammetric determination of cefixime in pharmaceuticals and biological fluids,” Anal. Biochem. vol. 407, p. 79, 2010.
[11] K. A. Raj, “Determination of cefixime trihydrate and cefuroxime axetil in bulk drug and pharmaceutical dosage forms by electrophoretic method,” Int. J. ChemTech. Res., vol. 2, p. 337, 2010.
[12] A. R. Solangi, S. Q. Memon, M. Y. Khuhawar, M. I. Bhanger, “Quantitative analysis of eight cephalosporin antibiotics in pharmaceutical products and urine by capillary zone electrophoresis,” Acta Chromatographica vol. 19 pp. 81-96, 2007.
[13] S. N. H. Azmi, B. Iqbal, N. S. H. Al-Humaimia, I. R. S. Al-Salmania, N. A. S. Al-Ghafria, N. Rahman, “Quantitative analysis of cefixime via complexation with palladium(II) in pharmaceutical formulations by spectrophotometry,” J. Pharm. Anal., vol. 3, pp. 248-256, 2013.
[14] G. A. Saleh, H. F. Askal, I. A, Darwish, A. -N. A. El-Shorbagi, “Spectroscopic analytical study for the charge-transfer of certain cephalosporins with chloranilic acid,” Anal. Sci. vol. 19 pp. 281-287, 2003.
[15] E. Y. Frag, A. B. Farag G. G. Mohamed, E. B. Yussof, “Development and validation of spectrophotometric and HPLC methods for the determination of cefixime in capsule and suspension,” Insight Pharmaceutical Sciences, vol. 2, pp. 8-16, 2012.
[16] D. Agbaba, S. Eric, K. Karljikovic-Rajic, S. Vladimirov, D. Zivanov- Stakic, “Spectrophotometric determination of certain cephalosporins using ferrihydroxamate method,” Spectroscopy Letters vol. 30, p. 309, 1997.
[17] B. S. Virupaxappa1, K. H. Shivaprasad, M. S. Latha, “A simple method for the spectrophotometric determination of cefixime in pharmaceuticals,” Asian J. Res. Chem. vol. 4, 1257, 2011.
[18] P. B. Shah and K. Pundarikakshudu, “Spectrophotometric, difference spectroscopic, and high-performance liquid chromatographic methods for the determination of cefixime in pharmaceutical formulations, ” J. AOAC Int., vol. 89, p. 987, 2006.
[19] S. I. Pasha, A. S. Kumar, K. Sravanthi,G. Srinika and V. Nikhila, “New visible spectrophotometric method for the determination of cefixime trihydrate in pharmaceutical formulations,” Orient J. Chem. vol. 28, p. 571, 2012.
[20] A. Kumar, L. Kishore, A. Nair and N. Kaur, “Kinetic spectrophotometric method for the estimation of cefixime in pharmaceutical formulations”, Der Pharma Chemica vol 3 pp. 279-291, 2011.
[21] J. Shah, M. R. Jan, S. Shah, and Inayatullah, “Spectrofluorimetric method for determination and validation of cefixime in pharmaceutical preparations through derivatization with 2-cyanoacetamide,” J. Fluoresc. 21, 579, 2011.
[22] D. A. C. Czegan and D. K. Hoover, “UV-visible spectrometers: versatile instruments across the chemistry curriculum,” J. Chem. Educ. vol. 89, p. 304, 2012.
[23] International Conference on Harmonisation, Food and Drug Administration, ICH Harmonised Tripartite Guideline – Text on Validation of Analytical Procedures. Rockville, MD, USA. Fed. Regist. 1995, 60, p. 11260.
[24] C. Hartmann, J. Smeyers-Verbeke, W. Pinninckx, Y. V. Heyden, P. Vankeerberghen, and D. L. Massart, “Reappraisal of hypothesis testing for method validation: detection of systematic error by comparing the means of two methods or of two laboratories,” Anal. Chem. 67, p. 4491, 1995.
[25] F. Feigl, Preliminary (Exploratory tests). In: Spot tests in organic analysis. 6th ed., Elsevier publishing company, Amsterdam. 1960, pp. 117–118.
[26] V. V. Nalimov, The Application of Mathematical Statistics to Chemical Analysis, Pergamon Press, Oxford, 1963. p. 167.
[27] J. C. Miller and J. N. Miller, “Errors in instrumental analysis; regression and correlation,” In: Statistics for analytical chemistry, Third edition, Ellis Horwood and Prentice Hall, England, 1993, p. 119.
[28] J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, “Statistics: Introduction to Chemometrics,” In: Vogel’s Textbook of Quantitative Chemical Analysis, 6th ed., Pearson Education, Singapore. 2002, p. 137.