Growth Behaviors, Thermostable Direct Hemolysin Secretion and Fatty Acid Profiles of Acid-adapted and Non-adapted Vibrio parahaemolyticus
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32805
Growth Behaviors, Thermostable Direct Hemolysin Secretion and Fatty Acid Profiles of Acid-adapted and Non-adapted Vibrio parahaemolyticus

Authors: Ming-Lun Chiang, Chieh Wu, Ming-Ju Chen

Abstract:

Three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) implicated in food poisoning outbreaks in Taiwan were subjected to acid adaptation at pH 5.5 for 90 min. The growth behaviors of acid-adapted and non-adapted V. parahaemolyticus in the media supplemented with various nitrogen and carbon sources were investigated. The effects of acid adaptation on the thermostable direct hemolysin (TDH) secretion and fatty acid profiles of V. parahaemolyticus were also examined. Results showed that acid-adapted and non-adapted V. parahaemolyticus 690, BCRC 13023 and BCRC 13025 grew similarly in TSB-3% NaCl and basal media supplemented with various carbon and nitrogen sources during incubation period. Higher TDH secretion was noted with V. parahaemolyticus 690 among the three strains. However, acid-adapted strains produced less amounts of TDH than non-adapted strains when they were grown in TSB-3% NaCl. Additionally, acid adaptation increased the ratio of SFA/USFA in cells of V. parahaemolyticus strains.

Keywords: Vibrio parahaemolyticus, acid adaptation, thermostable direct hemolysin, fatty acid profile.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096085

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068

References:


[1] Lou, Y. and A. E. Yousef. 1997. Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl. Environ. Microbiol. 63: 1252-1255.
[2] Browne, N. and B. Dowds. 2002. Acid stress in the food pathogen Bacillus cereus. J. Appl. Microbiol. 92: 404-414.
[3] Tetteh, G. L. and L. R. Beuchat. 2003. Exposure of Shigella flexneri to acid stress and heat shock enhances acid tolerance. Food Microbiol. 20: 179-185.
[4] Tosun, H. and S. A. Gönül. 2003. Acid adaptation protects Salmonella typhimurium from environmental stresses. Turk. J. Biol. 27: 31-36.
[5] Bearson, S., B. Bearson and J. W. Foster. 1997. Acid stress responses in enterobacteria. FEMS Microbiol. Lett. 147: 173-180.
[6] Abee, T. and J. A. Wouters. 1999. Microbial stress response in minimal processing. Int. J. Food Microbiol. 50: 65-91.
[7] Audia, J. P., C. C. Webb and J. W. Foster. 2001. Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int. J Med. Microbiol. 291: 97-106.
[8] Brown, J. L., T. Ross, T. A. McMeekin and P. D. Nichols. 1997. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int. J. Food Microbiol. 37: 163-173.
[9] Fozo, E. M., J. K. Kajfasz and R. G. Quivey Jr. 2004. Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol. Lett. 238: 291-295.
[10] Jobin, M. P., T. Clavel, F. Carlin and P. Schmitt. 2002. Acid tolerance response is low-pH and late-stationary growth phase inducible in Bacillus cereus TZ415. Int. J. Food Microbiol. 79: 65-73.
[11] Yeung P. S. M. and K. J. Boor. 2004. Effects of acid stress on Vibrio parahemolyticus survival and cytotoxicity. J. Food Prot. 67: 1328-1334.
[12] House, B., J. V. Kus, N. Prayitno, R. Mair, L. Que, F. Chingcuanco, V. Gannon, D. G. Cvitkovitch and D. B. Foster. 2009. Acid-stress-induced changes in enterohaemorrhagic Escherichia coli O157:H7 virulence. Microbiol. 155: 2907-2918.
[13] Liston, J. 1990. Microbial hazards of seafood consumption. Food Technol. 44:56-62.
[14] Daniels, N. A., L. MacKinnon, R. Bishop, S. Altekruse, B. Ray, R. M. Hammond, S. Thompson, S. Wilson, N. H. Bean and P. M. Griffin. 2000. Vibrio parahaemolyticus infections in the United States, 1973-1998. J. Infect. Dis. 181: 1661-1666.
[15] Su, Y. C. and C. Liu. 2007. Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol. 24: 549-558.
[16] Takeda, Y., 1983. Thermostable direct hemolysin of Vibrio parahaemolyticus. Pharmacol. Therap. 19: 123-146.
[17] Raimondi, F., J. P. Y. Kao, C. Fiorentini, A. Fabbri, G. Donelli, N. Gasparini, A. Rubino and A. Fasano. 2000. Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in in vitro systems. Infect. Immun. 68: 3180-3185.
[18] Taiwan Food and Drug Administration (TFDA). 2013. Occurrence of food poisoning outbreaks in Taiwan, 1981-2012. Ministry of Health and Welfare, Taipei, Taiwan.
[19] Centers for Disease Control and Prevention (CDC). 2013. Vibrio parahaemolyticus. Available at: http://www.cdc.gov/vibrio/vibriop.html, accessed November 12, 2013.
[20] Chiang M. L., C. C. Chou, H. C. Chen, Y. T. Tseng and M. J. Chen. 2012. Adaptive acid tolerance response of Vibrio parahaemolyticus as affected by acid adaptation conditions, growth phase, and bacterial strains. Foodborne Pathog. Dis. 9: 734-740.
[21] Chiang M. L., H. C. Chen, C. Wu, Y. T. Tseng and M. J. Chen. 2013. Effect of acid adaptation treatment on the survival of Vibrio parahaemolyticus in oyster homogenates under heat, cold and simulated gastrointestinal conditions. Taiwanese J. Agri. Chem. Food Sci. 51: 34-42.
[22] Chiang M. L., H. C. Chen, C. Wu and M. J. Chen. 2014. Effect of acid adaptation on the environmental stress tolerance of three strains of Vibrio parahaemolyticus. Foodborne Pathog. Dis. 11: 287-294.
[23] Chiang M. L., H. C. Chen, C. Wu, Y. T. Tseng and M. J. Chen. 2012. Effect of acid adaptation on the survival of three Vibrio parahaemolyticus strains under simulated gastric condition and their protein expression profiles. World Acad. Sci. Eng. Technol. 6: 233-236.
[24] Lepage, G. and C. Roy. 1986. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 27: 114-120.
[25] Eguchi, M., T. Nishikawa, K. Macdonald, R. Cavicchioli, J. C. Gottschal and S. Kjelleberg. 1996. Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256 Appl. Environ. Microbiol. 62: 1287-1294.
[26] Schimel, J., T. C. Balser and M. Wallenstein. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88: 1386-1394.
[27] Duffy, G., D. Riordan, J. Sheridan, J. Call, R. Whiting, I. Blair and D. McDowell. 2000. Effect of pH on survival, thermotolerance, and verotoxin production of Escherichia coli O157: H7 during simulated fermentation and storage. J. Food Protect. 63: 12-18.
[28] Yuk, H. G. and D. L. Marshall. 2004. Adaptation of Escherichia coli O157: H7 to pH alters membrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl. Environ. Microbiol. 70: 3500-3505.
[29] Yuk, H. G., D. L. Marshall and L. Douglas. 2005. Influence of acetic, citric, and lactic acis on Escherichia coli O157:H7 membrane lipid composition, verotoxin seretion, and acid resistance in simulated gastric fluid. J. Food Prot. 68: 673-679.
[30] Lepage, C., F. Fayolle, M. Hermann and J. P. Vandecasteele. 1987. Changes inmembrane lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. Microbiol. 133: 103-110.
[31] Bodnaruk, P. W. and D. A. Golden. 1996. Influence of pH and incubation temperature on fatty acid composition and virulence factors of Yersinia enterocolitica. Food Microbiol. 13: 17-22.