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Abstract—In this paper, frequency offset (FO) estimation schemes
robust to the non-Gaussian noise environments are proposed for
orthogonal frequency division multiplexing (OFDM) systems. First,
a maximum-likelihood (ML) estimation scheme in non-Gaussian
noise environments is proposed, and then, the complexity of the
ML estimation scheme is reduced by employing a reduced set of
candidate values. In numerical results, it is demonstrated that the
proposed schemes provide a significant performance improvement
over the conventional estimation scheme in non-Gaussian noise
environments while maintaining the performance similar to the
estimation performance in Gaussian noise environments.

Keywords—Frequency offset estimation, maximum-likelihood,
non-Gaussian noise environment, OFDM, training symbol.

I. INTRODUCTION

THE orthogonal frequency division multiplexing (OFDM)
has been adopted as a modulation technique of various

wireless systems such as digital video broadcasting-terrestrial
(DVB-T), wireless local area network (WLAN), and long term
evolution (LTE) by virtue of its immunity to multipath fading
and high spectral efficiency [1]-[4]. However, the OFDM is
very sensitive to the frequency offset (FO) caused by Doppler
shift or oscillator instabilities, and thus, the FO estimation is
one of the most important technical issues in OFDM systems
[1], [5]. Specifically, we consider the FO estimation using
training symbols, which provides a better performance than
that based on the blind approach [5].

Conventionally, the FO estimation schemes have been
proposed under the assumption that the noise distribution
is Gaussian [6]-[8]. Even though it is usually reasonable to
assume that the noise distribution is Gaussian from the central
limit theorem, it has been observed that the ambient noise
often exhibits non-Gaussian nature in wireless environments
[9], [10]. The FO estimation performance developed under the
Gaussian noise environments could be degraded under such
non-Gaussian noise environments.

In this paper, we propose robust FO estimation schemes
in non-Gaussian noise environments. First, we derive
a maximum-likelihood (ML) FO estimation scheme in
non-Gaussian noise modeled as a complex isotropic Cauchy
noise, and then, derive a simpler estimation scheme with
a lower complexity. From numerical results, the proposed
schemes are confirmed to offer a significant performance
improvement over the conventional scheme in non-Gaussian
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noise environments while maintaining the similar level of the
FO estimation performance in Gaussian noise environments.

The rest of this paper is organized as follows. Section
II introduces the related works on the FO estimation in
OFDM systems, and Section III describes the signal model.
In Section IV, two FO estimation schemes are proposed
for OFDM systems in non-Gaussian noise environments.
Section V demonstrates the numerical results concerning the
mean squared error (MSE) performance and computational
complexity of each the FO estimation schemes. Section VI
concludes this paper.

II. RELATED WORKS

Several schemes [6]-[8] have been proposed to estimate
the FO of OFDM signals assuming the Gaussian noise
environments. The FO estimation scheme in [6] uses a
training symbol with two identical halves to estimate the FO
within the sub-carrier spacing. Then, using the other training
symbol containing a pseudonoise (PN) sequence, the scheme
corrects the remaining FO that is a multiple of the sub-carrier
spacing. The scheme in [7] uses the best linear unbiased
estimation (BLUE) principle requiring only one training
symbol with more than two identical parts. Moreover, its
estimation performance is quite close to the Cramer-Rao lower
bound (CRLB). In [8], joint ML FO estimation scheme was
derived when the training symbol is repeated multiple times.
Specifically, the scheme in [8] exploits the correlation of any
pair of repetition patterns providing optimized performance in
the OFDM systems.

III. SIGNAL MODEL

The kth OFDM sample x(k) is generated by the inverse
fast Fourier transform (IFFT), and can be expressed as

x(k) =
1√
N

N−1∑
m=0

Xmej2πkm/N , (1)

for k = 0, 1, · · · , N − 1, where Xm is a phase shift keying
(PSK) or quadrature amplitude modulation (QAM) symbol in
the mth subcarrier and N is the size of the IFFT. Then, the
cyclic prefix (CP) of the OFDM symbol is inserted, whose
length is generally designed to be longer than the channel
impulse response, to avoid the intersymbol interference (ISI).
Assuming that the timing synchronization is perfect, we can
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express the kth received OFDM sample r(k) after removing
the CP as

r(k) =

L−1∑
l=0

h(l)x(k − l)ej2πkε/N + n(k) (2)

for k = 0, 1, · · · , N − 1, where h(l) is the lth channel
coefficient of a multipath channel with length L, ε is the FO
normalized to the subcarrier spacing 1/N, and n(k) is the kth
sample of additive noise.

In this paper, we adopt the complex isotropic symmetric
α stable (CISαS) model for the independent and identically
distributed noise samples {n(k)}N−1

k=0 this model has
been widely employed due to its strong agreement with
experimental data [11], [12]. The probability density function
(pdf) of n(k) is then given by [11]

fn(ρ) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−γ(u2+v2)

α
2 −j�{ρ(u−jv)}dudv,

(3)
where �{·} denotes the real part, the dispersion γ > 0
is related to the spread of the pdf, and the characteristic
exponent α ∈ (0, 2] is related to the heaviness of the tails
of the pdf: A smaller value of α indicates a higher degree of
impulsiveness, whereas a value closer to 2 indicates a more
Gaussian behavior.

A closed-form expression of (3) is not known to exist except
for the special cases of α = 1 (complex isotropic Cauchy) and
α = 2 (complex isotropic Gaussian). In particular, we have

fn(ρ) =

⎧⎨
⎩

γ
2π

(|ρ|2 + γ2
)− 3

2 , when α = 1
1

4πγ exp
(
− |ρ|2

4γ

)
, when α = 2.

(4)

Due to such a lack of closed-form expressions, we concentrate
on the case of α = 1: We shall see in Section V that
the estimation schemes obtained for α = 1 are not only
more robust to the variation of α, but they also provide a
better performance for most values of α, than the conventional
estimation scheme.

IV. PROPOSED SCHEMES

A. Maximum-likelihood FO Estimation Scheme

In estimating the FO, we consider a training symbol
{x(k)}N−1

k=0 with two identical halves as in [6], i.e., x(k) =
x(k +N/2) for k = 0, 1, · · · , N/2− 1. From (2), we have

r(k +N/2)− r(k)ejπε = n(k +N/2)− n(k)ejπε (5)

for k = 0, 1, · · · , N/2 − 1. Observing that n(k + N/2) −
n(k)ejπε obeys the complex isotropic Cauchy distribution with
dispersion 2γ (since the distribution of −n(k)ejπε is the same
as that of n(k), and assumed that the noise samples of CISαS
model are independent as in [13]), we obtain the pdf

fr(r|ε) =
N
2 −1∏
k=0

γ

π
(
|r(k +N/2)− r(k)ejπε|2 + 4γ2

) 3
2

(6)

of r = {r(k+N/2)− r(k)ejπε}N/2−1
k=0 conditioned on ε. The

ML estimation is then to choose ε̂ such that

ε̂ = argmax
ε̃

[log fr(r|ε̃)]
= argmin

ε̃
Λ(ε̃),

(7)

where ε̃ denotes the candidate value of
ε and the log-likelihood function Λ(ε̃) =∑N/2−1

k=0 log
{∣∣r(k +N/2)− r(k)ejπε̃

∣∣2 + 4γ2
}

is a periodic
function of ε̃ with period 2: The minima of Λ(ε̃) occur at
a distance of 2 from each other, causing an ambiguity in
estimation. Assuming that ε is distributed equally over
positive and negative sides around zero, the valid estimation
range of the ML estimation scheme can be set to −1 < ε ≤ 1,
as in [6]. The estimation scheme (7) will be called the Cauchy
ML estimation (CMLE) scheme.

B. Low-complexity FO Estimation Scheme

The CMLE scheme is based on the exhaustive search over
the whole estimation range (|ε| ≤ 1), which requires high
computational complexity. Thus, we propose a low-complexity
FO estimation scheme with the reduced set of the candidate
values.

In order to obtain the reduced set of the candidate values,
we exploit the property that ε = 1/π∠{x∗(k)x(k +N/2)} =
1/π∠{r∗(k)r(k + N/2)} in the absence of noise. Based on
this property, we obtain the set of the candidate values

ε̄(k) =
1

π
∠{r∗(k)r(k+N

2
)}, for k = 0, 1, · · · , N

2
−1. (8)

Exploiting the set of the candidate values in (8), the FO
estimate ε̂L can be obtained as follows

ε̂L = argmin
ε̄(k)

Λ(ε̄(k)), for k = 0, 1, · · · , N
2

− 1. (9)

In the following, (9) is denoted as the low-complexity CMLE
(L-CMLE) scheme. Using only N/2 candidate values, the
L-CMLE scheme can offer an almost same performance as the
CMLE scheme with the exhaustive search, which is verified
by numerical results in Section V.

V. NUMERICAL RESULTS

In this section, the proposed CMLE and L-CMLE schemes
are compared with the Gaussian ML estimation (GMLE)
scheme in [6] in terms of the MSE by computer simulations
using MATLAB program and computational complexity.
We assume the following simulation parameters: The IFFT
size N = 64, FO ε = 0.25, length 8 samples of
CP, the interval of search spacing 0.001 for the CMLE
scheme, and a multipath Rayleigh fading channel with
length L = 8 and an exponential power delay profile
of E[|h(l)|2] = exp(−l/L)/{∑L−1

l=0 exp(−l/L)} for l =
0, 1, · · · , 7, where E[·] denotes the statistical expectation.
Since CISαS noise with α < 2 has an infinite variance,
the standard signal-to-noise ratio (SNR) becomes meaningless
for such a noise. Thus, we employ the geometric SNR
(GSNR) defined as E[|x(k)|2]/(4C−1+2/αγ2/α) ,where C =
exp{limm→∞(

∑m
i=1

1
i − lnm)}� 1.78 is the exponential of
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Fig. 1. The MSE performances of the CMLE, L-CMLE, and GMLE schemes
as a function of the GSNR when α = 0.5.
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Fig. 2. The MSE performances of the CMLE, L-CMLE, and GMLE schemes
as a function of the GSNR when α = 1.

the Euler constant [14]. The GSNR indicates the relative
strength between the information-bearing signal and the
CISαS noise with α < 2. Clearly, the GSNR becomes the
standard SNR when α = 2. Since γ can be easily and exactly
estimated using only the sample mean and variance of the
received samples [15], it may be regarded as a known value:
Thus, γ is set to 1 without loss of generality.

Figs. 1-4 show the MSE performances of the CMLE,
L-CMLE, and GMLE schemes as a function of the GSNR
when α = 0.5, 1, 1.5, and 2, respectively. From the figures,
we can clearly observe that the CMLE and L-CMLE schemes
have a better estimation performance compared with that
of the GMLE scheme for most values of α, except for
α = 2. Another important observation is that the estimation
performance of the L-CMLE scheme is almost same as
that of the CMLE scheme. From this observation, it is
confirmed that the trial values for the L-CMLE scheme is
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Fig. 3. The MSE performances of the CMLE, L-CMLE, and GMLE schemes
as a function of the GSNR when α = 1.5.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 2 4 6 8 10 12 14 16 18 20

CMLE
L-CMLE
GMLE

GSNR (dB)

M
S

E

Fig. 4. The MSE performances of the CMLE, L-CMLE, and GMLE schemes
as a function of the GSNR when α = 2.

TABLE I
COMPUATIONAL COMPLEXITY OF THE FO ESTIMATION SCHEMES

CMLE L-CMLE GMLE
Number of candidates SN N/2 -

Real additions 3N − 1 per 3N − 1 per 3N − 2
candidate candidate + N

Real multiplications 5N/2 per 5N/2 per 2N + 1
candidate candidate + 5N/2

reasonable. Numerical results show that proposed schemes
not only outperform the conventional scheme in non-Gaussian
noise environments, but also provide similar performance in
Gaussian noise (α = 2) environments. This can clearly explain
a robustness of proposed schemes to the variation of the
channel environments. In short, when the type of the noise is
not known, the L-CMLE scheme can be an effective solution
with a robust performance to the noise.

Table I shows the computational complexity of CMLE,
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L-CMLE, and GMLE schemes, where S denotes the number
of search spacing for the CMLE scheme. The GMLE
scheme requires (3N − 2) real additions and (2N + 1) real
multiplications only. On the other hand, the CMLE scheme
requires SN (3N − 1) real additions and SN (5N/2) real
multiplications by choosing the most likely candidate among
the SN candidates. Using N/2 reliable candidates only,
the L-CMLE scheme reduced the number of operations to
N/2 (3N − 1)+N real additions and (N/2 + 1) (5N/2) real
multiplications.

VI. CONCLUSION

In this paper, we have proposed FO estimation schemes
in non-Gaussian noise environments. First, an ML estimation
scheme in non-Gaussian noise environments has been
proposed, and then a simpler estimation scheme based on the
ML estimation scheme has been shown. From the numerical
results, it has been confirmed that the proposed ML-based
FO estimation scheme offers a significant performance
improvement in terms of MSE over the conventional
estimation scheme in non-Gaussian noise environments while
maintaining the similar level of the FO estimation performance
in Gaussian noise environments. In addition, it is confirmed
that the proposed simpler FO estimation scheme has not only a
lower complexity but also the similar estimation performance
compared with the proposed ML-based FO estimation scheme.
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