
 

 

 
Abstract—This paper presents a study on the effect of 

second-order slip on forced convection through a long isoflux heated 
or cooled planar microchannel. The fully developed solutions of flow 
and thermal fields are analytically obtained on the basis of the 
second-order Maxwell-Burnett slip and local heat flux boundary 
conditions. Results reveal that when the average flow velocity 
increases or the wall heat flux amount decreases, the role of thermal 
creep becomes more insignificant, while the effect of second-order slip 
becomes larger. The second-order term in the Deissler slip boundary 
condition is found to contribute a positive velocity slip and then to lead 
to a lower pressure drop as well as a lower temperature rise for the 
heated-wall case or to a higher temperature rise for the cooled-wall 
case. These findings are contrary to predictions made by the 
Karniadakis slip model. 
 

Keywords—Microfluidics, forced convection, thermal creep, 
second-order boundary conditions. 

I. INTRODUCTION 

OWADAYS, microelectromechanical systems (MEMS) 
have developed a large number of microfluidic devices 

and their applications, such as micropumps, microvalves, 
micromixers, microheat exchangers, microchannel heat sinks, 
microfuel cells, etc. A fundamental understanding of physical 
aspects of microfluidics, which may deviate from those at the 
macroscale, is required for the technological demands. 

Numerous theoretical investigations have been carried out on 
microscale slip flow and heat transfer in the past two decades. 
Tunc & Bayazitoglu [1] performed an analytical study of fully 
developed forced convection in an isoflux rectangular 
microchannel by solving the Navier-Stokes and energy 
equations subject to the first-order Maxwell slip and local heat 
flux boundary conditions. Avci & Aydin [2] analytically 
investigated the role of buoyancy in fully developed forced 
convection through a vertical planar microchannel with 
asymmetric wall heat fluxes. Sadeghi & Saidi [3] placed 
emphasis on the importance of viscous dissipation in fully 
developed convection by considering planar and annular 
microchannels with asymmetric wall heat fluxes. Recently, 
Çetin [4] analytically studied the fully developed forced 
convection with thermal creep in isoflux planar and circular 
microchannels by considering the second-order Deissler and 
Karniadak is slip boundary conditions. Using the 
Maxwell-Burnett slip boundary conditions, however, has been 
shown to be an adequate way to model second-order slip flow 
[5]. 
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In this paper, a study on forced convection in a long heated or 
cooled planar microchannel with symmetric wall heat fluxes is 
conducted. The Navier-Stokes and energy equations subject to 
the second-order Maxwell-Burnett slip and local heat flux 
boundary conditions are analytically solved for the fully 
developed flow. The calculated results are presented for air at 
the standard reference state with complete accommodation. The 
Deissler and Karniadakis slip models are then tested via the 
comparisons of predictions made by them with those obtain by 
the present slip model, so as to see how well these two slip 
models describe the flow and heat transfer behavior. 

 

 

Fig. 1 Model geometry 

II. PROBLEM FORMULATIONS 

Consider a long symmetrically heated or cooled stationary 
horizontal planar microchannel of length l  and width w , 
whose heat flux is wq , as shown in Fig. 1. The rarefied gas flow 

in the microchannel originates from a reservoir at a reference 
state and terminates in a discharge area of lower pressure. In the 
system considered, the flow enters the channel with a uniform 
velocity iu . Let x  and y  denote the usual rectangular 

coordinates, let xu  and yu , denote the components of velocity 

in the x  and y  directions, let T  denote the temperature, let 

the subscript r denote the reference-state values, and let the 
subscripts i and o denote the inlet and outlet values, 
respectively. For a sufficiently long microchannel, we assume 
that a hydrodynamically and thermally fully developed flow 
prevails in the isoflux microchannel, obeying the limit: 

0/  xux , 0yu , and 1/ cxT   (a constant) [6]. The 

simplified field equations for steady two-dimensional 
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incompressible flow of constant material properties with 
negligible gravitational field and internal heat generation are 
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where p  is the pressure,  is the density,   is the viscosity, 

pc  is the constant-pressure specific heat, and k  is the thermal 

conductivity. It should be noted that for a low-speed flow, the 
field equations could be simplified to incompressible ones. In 
addition, a small temperature difference between the wall and 
the reservoir supports the assumption of constant material 
properties [7]. 

The corresponding second-order Maxwell-Burnett slip [5] 
and local heat flux boundary conditions are 

 








































,
),(

)()(2
)(

,
)0,(

)0()0(2
)0(

2,
3

2

2
2

21

2,
3

2

2
2

21

x

wxTc
a

dy

wud
a

dy

wdu
awu

x

xTc
a

dy

ud
a

dy

du
au

r
r

rrp

x
r

x
r

m

m
x

r
r

rrp

x
r

x
r

m

m
x

















     (3) 

 





















,
),(

,
)0,(

r

w

r

w

k

q

y

wxT

k

q

y

xT
                             (4) 

 
where m is the tangential momentum accommodation 

coefficient,   is the molecular mean free path, related to T  and 
p  by 
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Here R̂ is the specific gas constant,   is the ratio of specific 

heats, and Pr  is the Prandtl number. Note that the values of the 
second-order slip coefficient 2a  used by Çetin [4] are 0.5 , on 

the basis of the Karniadakis slip model [8], and 125.1 , on the 
basis of the Deissler slip model [9]. The comparisons of 
predictions made by the Karniadakis and Deissler slip models 
with those obtain by the present slip model, which can describe 
the actual slip flow behavior, could be done to verify the 
validation of the two second-order boundary conditions. 

Equations (1)−(4) can be non-dimensionalized by using the 
following parameters: 
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where Re  is the Reynolds number, Br  is the Brinkman 
number, Pr  is the Prandtl number, and Kn  is the Knudsen 
number. Here ccc Tul ,, , and cp  are the characteristic length, 

velocity, temperature, and pressure, respectively, and defined 
as follows: 
 

wlc  , ic uu  , rc TT  , 2
crc up  .             (8) 

 
Thus, the dimensionless field equations can be written as 
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and the corresponding dimensionless boundary conditions are 
given by 
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The velocity solution of (9) as a function of only Y  is 

possible only if the pressure gradient dXdP /  is a constant. In 
addition, a dimensionless conservation condition for the flow 
rate is given by 

 

1
1

0
UdY .                          (13) 

 
Solving (9) and (10) subject to the boundary conditions (11) 

and (12) and flow-rate conservation condition (13) gives the 
following velocity, pressure gradient, and temperature gradient 
analytical solutions: 
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Fig. 2 Velocity distribution for different second-order slip models with 
Kn=0.1 

III. RESULTS AND DISCUSSION 

Air is used in many engineering application fields. We now 
pay attention to the influence of second-order slip on the forced 

convection of air at the standard reference state ( C25orT and 

atm1rp ) with complete accommodation ( 1m ). The 

physical properties at this state can be found in Weng & Chen 
[7]. The parametric analysis of this problem is performed over 
the range 5.0Br5.0  , and the chosen reference value of 
Kn  (or w ) for the analysis is 0.1 (or m0.667  ). 

 

 

Fig. 3 Pressure gradient versus Br with Kn=0.1. 
 

In Figs. 2–4, we investigate the influence of second-order 
slip on the velocity, pressure gradient, and temperature gradient 
relative to the forward-creep (heated-wall) case 0Br   and the 
backward-creep (cooled-wall) case 0Br   at a microscale 
level ( 1.0Kn  ).Fig. 2 illustrates the velocity profiles for the 
Maxwell-Burnett slip model ( 0.1452 a ), the Karniadakis 

slip model ( 5.02 a ), and the Deissler slip model (

1.1252 a ). A comparison of cases 0.01Br   and 

0.01Br   shows that a forward creep contributes a positive 
slip to the velocity along the wall surface and then leads to a 
more gradual velocity distribution; however, a backward creep 
contributes a negative slip and then results in a more extreme 
distribution. In both the two cases, the Deissler slip model 
predicts a significantly relatively large velocity slip while the 
Karniadakis slip model predicts a significantly relatively small 
slip. Figs. 3 and 4 illustrate the variations of the pressure 
gradient dXdP /  and the temperature gradient XT  / with the 
Brinkman number Br . It is found that thermal creep could play 

an important role in the region 0.2Br   for dXdP /(Br)  and 

the region 0.05Br  for XT  /(Br) . When the value of Br  

increases, the role of thermal creep decreases, while the effect 
of second-order slip increases. In Fig. 3, the Deissler slip model 
predicts relatively large pressure gradient values, while the 
Karniadakis slip model predicts relatively small values, no 
matter what the creep type is. The larger (smaller) pressure 
gradient means that the second-order slip flow displays a lower 
(higher) pressure drop. In Fig. 4, the Deissler slip model 
predicts relatively large temperature gradient values for the 
backward-creep case but relatively small values for the 
forward-creep case. Such a conclusion for the Karniadakis slip 
model were found to be contrary to the Deissler predictions. 
The larger (smaller) temperature gradient means that the heat 
transfer displays a higher (lower) temperature rise. 
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Fig. 4 Temperature gradient versus Br with Kn=0.1. 

IV. CONCLUSIONS 

An analytical study on forced convection in a long heated or 
cooled planar microchannel with symmetric wall heat fluxes 
has been made by solving the Navier-Stokes and energy 
equations subject to the second-order Maxwell-Burnett slip and 
local heat flux boundary conditions. The fully developed 
solutions of velocity, pressure gradient, and temperature 
gradient were presented for air at the standard reference state 
with complete accommodation. Second-order slip was proven 
to have a significant effect, except for sufficiently small 
absolute Brinkman numbers (small average flow velocities or 
great wall heat flux amounts), at which thermal creep could 
play an important role. The Deissler and Karniadakis slip 
models were tested via the comparisons of predictions made by 
them with those obtain by the present slip model. For flow 
analysis, it was found that the second-order term in the Deissler 
slip boundary condition contributes a positive velocity slip and 
then leads to a lower pressure drop, while the Karniadakis slip 
model predicts a negative slip and then a higher drop. As for 
heat transfer analysis, it was observed that, for the heated-wall 
(forward-creep) case, the second-order term in the Deissler slip 
boundary condition results in a lower temperature rise, while 
the Karniadakis slip model predicts a higher rise. The 
conclusions for the cooled-wall (backward-creep) case were 
found to be contrary to the heated-wall predictions. 
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