Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

Authors: Tatyana A. Karpenyuk, Saltanat B. Orazova, Yana S. Tzurkan, Alla V. Goncharova, Bakytzhan K. Kairat, Togzhan D. Mukasheva, Ludmila V. Ignatova, Ramza Z. Berzhanova

Abstract:

Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. The features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums were determined. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which ac­counts for 70 to 83% of the total number of fatty acids. The share of monoenic acids accounts from 18 to 34%, while the share of unsaturated fatty acids - from 44 to 62% of the total number of unsaturated fatty acids fraction. Among the un­saturated acids dominate α-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2).

Keywords: Fatty acids, lipids, microalgae.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093744

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133

References:


[1] V. A. Ziboh "Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites", Am. J. Clin. Nutr., vol. 71, N.1, pp.361-366, 2000.
[2] A. P. Simopoulos "The traditional diet of Greece and cancer", Eur. J. Cancer Prev., vol. 13, N. 3, pp. 219-230, 2004.
[3] F. Hempel, A. S. Bozarth, N. Lindenkamp, A. Klingl, S. Zauner, U. Linne, A. Steinbüchel, U. G. Maier "Microalgae as bioreactors for bioplastic production", Microbial Cell Factories, vol.10, pp. 81-89, 2011.
[4] J. M. Gordon, J. E. Polle "Ultrahigh bioproductivity from algae", Applied Microbiology and Biotechnology, vol. 76, pp.969-975, 2007.
[5] M. R. Wenk, "The emerging field of lipidomics", Nature Reviews Drug Discovery, vol. 4, pp. 594-610, 2005.
[6] P. C. Calder, "Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale", Biochimie, vol. 91, N. 6, pp. 791-795, 2009.
[7] D. L. O'Conner, R. Hall, D. Adamkin, "Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: A prospective, randomized controlled trial", Pediatrics, N. 108, pp. 359-371, 2001.
[8] M. E. De Swaaf, T. C. De Rijk, G. Eggink, L. Sijtsma, "Optimisation of docosahexaenoic acid production in batch cultivation by Crypthecodinium cohnii", J. Biotechnol., vol. 70, pp. 185-192, 1999.
[9] T. G. Ksan, A. L. Zekerüyaoúlu, I. Ak. "The growth of Spirulina platensis in different culture systems under greenhouse condition", Turk. J. Biol., vol. 31, pp. 47-52, 2007.
[10] T. A. Karpenyuk, S. B. Orazova, S. A. Dzhokebaeva, A. V. Goncharova, Y. S. Tzurkan, A. M. Kalbaeva, "Analysis of microalgae lipids isolated from basin of Kazakhstan", WASET, vol. 79, pp. 2108-2010, 2013.
[11] R. R. L. Guillard, Culture methods / G. M. Hallegraeff, D. M. Anderson, A. D. Cembella, Manual on Harmful Marine Microalgae. IOC Manuals and Guides. Paris: UNESCO, 1995, pp. 45-62.
[12] R. P. Trenkenshu, R. G. Gevorgiz, A. B. Borovkov, The Fundamentals of Industrial Cultivation of Dunaliella salina. Sevastopol: ECOSI–Hydrophisica, 2005, pp. 25-31.
[13] Z. Chi, D. Pyle, Z. Wen, C. Frear, S. Chen, ''A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation'', Process Biochemistry, vol. 42, pp. 1537-1545
[14] C. Ratledge, J. P. Wynn, "The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms", Advances in Applied Microbiology, vol. 51, pp. 1-51, 2002.
[15] M. Wendel, A. R. Heller, "Anticancer actions of omega-3 fatty acids--current state and future perspectives", Anticancer Agents Med Chem., vol. 9, N. 4, pp. 457-470, 2009.
[16] S. S. Palakurthi, R. Fluckiger, H. Aktas, "Inhibition of translation initiation mediates the anticancer effect of the n-3 polyunsaturated fatty acid eicosapentaenoic acid", Cancer Res., vol. 60, pp. 2919-2925, 2000.
[17] W. E. Hardman, "Omega-3 fatty acids to augment cancer therapy", J. Nutr., vol. 132, pp. 3508-3512, 2002