
Ensuring Consistency under the Snapshot Isolation
Carlos Roberto Valêncio, Fábio Renato de Almeida, Thatiane Kawabata,

Leandro Alves Neves, Julio Cesar Momente, Mario Luiz Tronco,
Angelo Cesar Colombini

Abstract—By running transactions under the SNAPSHOT isolation
we can achieve a good level of concurrency, specially in databases
with high-intensive read workloads. However, SNAPSHOT is not
immune to all the problems that arise from competing transactions
and therefore no serialization warranty exists. We propose in this
paper a technique to obtain data consistency with SNAPSHOT by using
some special triggers that we named DAEMON TRIGGERS. Besides
keeping the benefits of the SNAPSHOT isolation, the technique is
specially useful for those database systems that do not have an
isolation level that ensures serializability, like Firebird and Oracle. We
describe all the anomalies that might arise when using the SNAPSHOT
isolation and show how to preclude them with DAEMON TRIGGERS.
Based on the methodology presented here, it is also proposed the
creation of a new isolation level: DAEMON SNAPSHOT.

Keywords—Data consistency, serialization, snapshot.

I. INTRODUCTION

by the ANSI specifications [1] and requires a multiversion
concurrency control system in order to maintain multiple
versions of the data items in a database [2], [3]. Fundamentally,
the SNAPSHOT isolation just adds the detection of concurrent
write-write conflicts to these systems.

In systems where the SNAPSHOT isolation is available, the
transactions receive unique identifiers at the time they start and
commit, known as start-timestamp (ts) and commit-timestamp
(tc). In general these identifiers are assigned by a centralized
service to ensure the order of start and end of each transaction
and the uniqueness of each moment [2].

A transaction Ti under the SNAPSHOT isolation sees only
the consistent state of the database at the time of its beginning,
in other words, only those data with commit-timestamp δ
less than the start-timestamp of the transaction Ti (δ < tsi).
This snapshot of the database is totally immune to operations
performed by concurrent transactions and behaves as if it were
under the action of a single transaction. For the SNAPSHOT
transaction, the only accessible data are those committed
before its beginning or generated by itself [2]–[4].

Two transactions Ti and Tj are in conflict if they have
spatial and temporal overlap. A spatial overlap occurs when

C. R. Valêncio, F. R. Almeida, T. Kawabata, L. A. Neves,
and J. C. Momente are with the Department of Computer
Science and Statistics, São Paulo State University – UNESP, São
José do Rio Preto, SP, Brazil (e-mails: valencio@ibilce.unesp.br,
fabiorenato.al@gmail.com, thatianekawabata@gmail.com,
leandro@ibilce.unesp.br, juliocesar.momente@gmail.com).

M. L. Tronco is with the Department of Mechanical Engineering, University
of São Paulo – USP, São Carlos, SP, Brazil (e-mail: mltronco@sc.usp.br).

A. C. Colombini is with the Department of Computer Science, Federal
University of São Carlos – UFSCAR, São Carlos, SP, Brazil (e-mail:
accolombini@dc.ufscar.br).

both transactions write the same data item, giving rise to
a write-write conflict. In turn, a temporal overlap occurs
when Ti and Tj run concurrently, that is tsi

< tcj
and

tsj < tci [2]. Thus, a transaction Ti under the SNAPSHOT
isolation is allowed to commit only if no other transaction with
commit-timestamp δ in the running time of Ti (tsi

< δ < tci
)

wrote a data item also written by Ti [4].
Implementations of the SNAPSHOT isolation have the

advantage that writes of a transaction do not block the
reads of others. Moreover, because the protocol is concerned
only with write-write conflicts, there is no transaction
management overhead on read data items [2]. But even
working on a consistent and isolated view of the database, and
also preventing concurrent write-write conflicts, transactions
running under the SNAPSHOT isolation are not free from
inconsistencies in data [2]. In this paper we describe a
technique that keeps the benefits of SNAPSHOT use and, at
the same time, ensures only serializable histories. Although
initially designed as an engineering solution, the technique can
be generalized to a new isolation level that considers business
rules among data items.

II. SNAPSHOT ANOMALIES AND HOW TO AVOID THEM

Before delving into the details of the SNAPSHOT anomalies,
the following history notation must be considered [5]:

• wi(xi) — Transaction Ti writes data item x.
• wi(xi,v) — The same as wi(xi), but the value v written

is described.
• ri(xj) — Transaction Ti reads data item x, which has

been previously written by transaction Tj . When j = 0,
it means data item x has been previously loaded into the
database.

• ri(xj ,v) — The same as ri(xj), but the value v read is
described.

• ci — Transaction Ti commits.
• ai — Transaction Ti aborts.

A. Case 1: Write Skew

Consider the relational schema depicted in Fig. 1, where
two tables are defined: People and Accounts. Each row in
the People table will represent a person in real life and each
row in the Accounts table will represent one bank account.
According to the schema, a person is not required to have a
bank account, but such account, when exists, must be assigned
to only one person. Whereas the attribute Customer keeps the
holder of an account, the attribute Spouse links a person to
his or her spouse, who must be another person.

SNAPSHOT is an isolation level not originally described

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:7, 2014

1096International Scholarly and Scientific Research & Innovation 8(7) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

7,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
86

36
.p

df

Fig. 1. Relational schema representing the People and Accounts tables

In Fig. 2 we can see a possible instance of a relational
database designed according to the schema depicted in Fig. 1.
The rows in the People table with Id values 1 and 2
represent a couple and therefore are linked together through
the attribute Spouse. For those people who have a bank
account (customers), the attribute Customer keeps the Id
value of the person holding it.

Fig. 2. Content of the People and Accounts tables

The following business rule exists as well: a withdrawal
can be made from a customer’s account, even in case of no
sufficient funds, considering that the account balance of the
customer’s spouse can cover the remaining debt.

Essentially the rule dictates that an account balance can
become negative as long as the total balance of the couple
cannot. Consider now two transactions T1 and T2 with the
following characteristics:
– T1 attempts to withdraw $60 from the account with Id = 1.
– T2 attempts to withdraw $60 from the account with Id = 2.

In series just one of the transactions would be completed
successfully and thus the database would remain in a
consistent state. However, consider the following history H1

as the result of an interleaved execution of the transactions,
where x represents the account with Id = 1 and y represents
the one with Id = 2.
H1: r1(x0, 50) r2(y0, 50) r1(y0, 50) w1(x1,−10) c1

r2(x0, 50) w2(y2,−10) c2
Initially transaction T1 checks the balance of account x and

transaction T2 does the same with account y. T1 notices that
account x has no sufficient funds to cover the withdrawal and
then starts checking the balance of account y. Transaction T1

then confirms the possibility of withdrawing and subtracts $60
from the balance of account x, committing right after. By
the time T1 ends, the database is still in a consistent state.
Following that, T2 notices that account y has no sufficient
funds to cover the withdrawal and then starts checking the
balance of account x. We should note at this point that even
though T1 has already committed, T2 sees only a previous
version of the value written in x by T1. Transaction T2

wrongly concludes the possibility of withdrawing and then
subtracts $60 from the balance of account y, committing right
after. By the time T2 ends, the balance of both accounts are
taken to $−10, thus violating the business rule and leading

the database to an inconsistent state. History H1 is, therefore,
not serializable but possible to happen under the SNAPSHOT
isolation.

In order to avoid the anomaly we can define a special
trigger for the Accounts table. Basically, the trigger must
enforce the following constraint to the database management
system (DBMS): every time an account balance is updated by
a transaction running under the SNAPSHOT isolation, 1) the
holder of the account must be identified, 2) the spouse of the
holder must also be identified (if he or she exists), and 3) the
account of the spouse (if it exists) must be written.

As a result of the trigger insertion, the history H1 would
be executed as follows, where the notations ri{Δj} and
wi{Δi} denote, respectively, read and write operations made
by transaction Ti on data item Δ because of the trigger
execution.
H′

1: r1(x0, 50) r2(y0, 50) r1(y0, 50)
w1(x1,−10) r1{α0} r1{β0} w1{y1} c1 r2(x0, 50)
w2(y2,−10) r2{β0} r2{α0} w2{x2} a2

This time though there is a trigger defined for the rows in
the Accounts table and because the attribute Balance was
updated by transaction T1, the trigger’s body is executed. As
the trigger runs, the data items α, β, and y are also accessed,
which represent respectively the holder of the account x, the
spouse of the holder, and the spouse’s account. Three more
actions are processed by the trigger when T2 updates the
balance of account y, this time in the holder of account y
(β), the spouse of the holder (α), and the spouse’s account
x. By the time T2 tries to commit, the SNAPSHOT isolation
detects a spatial and temporal overlap due to the writings in
data items x and y made by both transactions T1 and T2. So,
transaction T2 aborts and the database remains in a consistent
state.

B. Case 2: Phantom

Consider the relational schema depicted in Fig. 3, where
three tables are defined: Employees, Projects, and Tasks.
Each row in the Employees table will represent an employee
in real life and each row in the Projects table will represent
a project currently being developed by a company. A project
may be assigned to one or more employees, and an employee
can work on many projects as long as the total daily hours
does not exceed eight. The assignment of projects is done
by inserting records in the Tasks table, where the attribute
Hours specifies the number of daily hours that the employee
must devote to the project.

Fig. 3. Relational schema representing the Employees, Projects, and Tasks
tables

In Fig. 4 we can see a possible instance of a relational
database designed according to the schema depicted in Fig. 3.
As we can see in the Tasks table, the employee with Id = 1
works in three projects, totaling six daily hours.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:7, 2014

1097International Scholarly and Scientific Research & Innovation 8(7) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

7,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
86

36
.p

df

Fig. 4. Content of the Employees, Projects, and Tasks tables

Consider now two transactions T1 and T2 with the following
characteristics:
– T1 attempts to allocate one daily hour of the employee with
Id = 1 for the project with Id = 4.
– T2 attempts to allocate two daily hours of the employee with
Id = 1 for the project with Id = 5.

In series just one of the transactions would be completed
successfully and thus the database would remain in a
consistent state. However, consider the following history H2

as the result of an interleaved execution of the transactions,
where a, b, and c represent, respectively, the first three already
assigned tasks to the employee in the Tasks table, and x and
y represent the possible tasks to be inserted by transactions
T1 and T2, respectively.
H2: r1(a0, 4) r1(b0, 1) r1(c0, 1) r2(a0, 4) r2(b0, 1) r2(c0, 1)

w1(x1, 1) c1 w2(y2, 2) c2
Transaction T1 checks the assigned hours for tasks a, b, and

c and concludes that the employee still has two daily hours
available. In the same way, transaction T2 also concludes that
the employee has two daily hours available. T1 then assigns
a new one-hour task x to the employee, committing right
after. By the time T1 ends, the database is still in a consistent
state. Following that, T2 assigns a new two-hour task y to the
employee, committing right after. By the time T2 ends, the
database is led to an inconsistent state because the employee
receives a nine-hour working day. History H2 is, therefore,
not serializable but possible to happen under the SNAPSHOT
isolation.

In order to avoid the anomaly we can define a special
trigger for the Tasks table. Basically, the trigger must enforce
the following constraint to the DBMS: every time a task is
assigned to an employee by a transaction running under the
SNAPSHOT isolation, 1) the employee itself must be written.

As a result of the trigger insertion, the history H2 would be
executed as follows.
H′

2: r1(a0, 4) r1(b0, 1) r1(c0, 1) r2(a0, 4) r2(b0, 1) r2(c0, 1)
w1(x1, 1) w1{α1} c1 w2(y2, 2) w2{α2} a2

This time there is a trigger defined for the rows in the
Tasks table and because the attribute Hours was updated by

transaction T1, the trigger’s body is executed and the employee
α is also written. When T2 assigns a new two-hour task y
to the employee, one more write action is performed on the
employee α, this time by transaction T2. By the time T2

tries to commit, the SNAPSHOT isolation detects a spatial and
temporal overlap due to the writings in data item α made by
both transactions T1 and T2. So, transaction T2 aborts and the
database remains in a consistent state.

C. Case 3: Read-Only Transaction Anomaly

Consider the relational schema depicted in Fig. 5, where
three tables are defined: Customers, SavingsAccounts, and
CheckingAccounts. Each row in the Customers table will
represent a bank customer in real life and each row in
the SavingsAccounts and CheckingAccounts tables will
represent, respectively, the customer’s savings and checking
accounts. According to the schema, every bank customer must
have both types of accounts, which in turn must be assigned
to only one customer. The attribute Customer in both account
tables keeps the Id of the customer.

Fig. 5. Relational schema representing the Customers, SavingsAccounts,
and CheckingAccounts tables

In Fig. 6 we have a possible instance of a relational database
designed according to the schema depicted in Fig. 5. As we
can see, the row in the Customers table with Id = 1 represents
a bank customer that has a savings account with Id = 10 and
a checking account with Id = 101.

Fig. 6. Content of the Customers, SavingsAccounts, and
CheckingAccounts tables

The following business rule exists as well: a withdrawal can
be made from any of a customer’s account, even in case of
no sufficient funds, considering that the balance of the other
account can cover the remaining debt; the withdrawal is also
granted if the total balance cannot cover the debit, but a penalty
charge of $1 is added to the account being operated.

Consider now three transactions T1, T2, and T3 with the
following characteristics:
– T1 deposits $20 into the savings account with Id = 10.
– T2 makes a withdrawal of $10 from the checking account
with Id = 101.
– T3 is a read-only transaction that checks the balance of both
accounts.

If T1 runs before T2, in other words, if the deposit is done
before the withdrawal, then the savings account balance will

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:7, 2014

1098International Scholarly and Scientific Research & Innovation 8(7) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

7,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
86

36
.p

df

be $20 and the checking account balance will be $−10. In
case T2 runs before T1, that is to say, the withdrawal is done
before the deposit, then the checking account balance will
be $−11 and the savings account balance will be $20. In
theory, transaction T3 should always see a consistent state of
the database, especially because it is a read-only SNAPSHOT
transaction. However, consider the following history H3 as the
result of an interleaved execution of the transactions, where x
represents the checking account and y represents the savings
account.
H3: r2(x0, 0) r2(y0, 0) r1(y0, 0) w1(y1, 20) c1

r3(x0, 0) r3(y1, 20) c3 w2(x2,−11) c2
At the end we have a checking account balance of $−11 and

a savings account balance of $20, but transaction T3 returns a
checking account balance of $0 and a savings account balance
of $20. According to [6], T3 result is inconsistent considering
the final state of the database: T3 confirms that the deposit
was done before the withdrawal and, in this case, no penalty
charge should have been added and the final result should be
a checking account balance of $−10 instead of $−11. History
H3 is, therefore, not serializable but possible to happen under
the SNAPSHOT isolation.

In order to avoid the anomaly we can define special triggers
for both accounts tables. Basically, the definition of the triggers
must enforce the following constraint to the DBMS: every time
the balance of one of the accounts of a customer is updated
by a transaction running under the SNAPSHOT isolation, 1) the
other account of the customer must also be written.

As a result of the definition of the two triggers, the history
H3 would be executed as follows.
H′

3: r2(x0, 0) r2(y0, 0) r1(y0, 0) w1(y1, 20) w1{x1} c1
r3(x0, 0) r3(y1, 20) c3 w2(x2,−11) w2{y2} a2

This time, when transaction T1 deposits $20 into
the customer’s savings account y, the trigger for the
SavingsAccounts table is executed and the customer’s
checking account x is written. As soon as transaction T2 makes
the withdrawal from the customer’s checking account x, the
trigger for the CheckingAccounts table is executed and the
customer’s savings account y is also written. By the time T2

tries to commit, the SNAPSHOT isolation detects a spatial and
temporal overlap due to the writings in data items x and y
made by both transactions T1 and T2. So, transaction T2 aborts
and the database remains in a consistent state. We should also
note that transaction T3, which was previously reported as
inconsistent considering the final state of the database, now
gets consistent results.

III. DAEMON TRIGGERS THEORY

We have named the special triggers defined so far
as DAEMON TRIGGERS because they primarily work as
background entities that only ensure data consistency by
performing some identity writes, which in fact do not change
the values in a row but are sufficient for the detection of
write-write conflicts by the SNAPSHOT protocol. Essentially,
a DAEMON TRIGGER must be defined considering a business
rule and a dependency path among the data items that are
under a constraint.

For Case 1, there is a business rule enforcing that the
possibility of a withdrawal from a customer’s account is
conditioned to the balance of his or her spouse’s account, so
when one of the balances is updated, the DAEMON TRIGGER
must perform an identity write on the other balance. Due to the
normalization of the database, some tuples must be accessed
in order to be able to reach one account from the other,
establishing a dependency path between the two accounts.

In the same way, there is a business rule in Case 2 enforcing
that an employee daily hours must not exceed eight, so when a
new task is assigned to an employee, the DAEMON TRIGGER
must perform an identity write on the employee itself. In this
case the employee and task tuples are considered to be under
a constraint.

Finally, in Case 3 there is a business rule enforcing that the
application or not of a penalty charge during a withdrawal
operation depends on the balance of both accounts of a
customer, so when one of the balances is updated, the
DAEMON TRIGGER must perform an identity write on the
other balance.

IV. TESTS AND RESULTS

Benchmark systems such as TPC-C do not trigger the
occurrence of the Write Skew phenomenon [4], [7] or any of
the other SNAPSHOT anomalies and hence are not suitable for
measuring the efficiency of an algorithm based on SNAPSHOT
and adapted to provide serialization warranty. Because this
work is concerned with this assurance, the tests must consider
workloads that are not serializable under the SNAPSHOT
isolation so as to measure the cost associated with obtaining
only serializable histories. Therefore, the adopted system
employs features of the benchmark SmallBank [8] and the
test platform used in [7].

Originally the benchmark system SmallBank was designed
for the relational model aiming the occurrence of the problem
“Read-only transaction anomaly,” identified by [6]. A similar
system, named SmallBank++, was built in this work and also
aims the occurrence of anomalies when transactions run under
the SNAPSHOT isolation. As in SmallBank, the benchmark
SmallBank++ provides a set of transactional tasks that reflect
the functionalities of a simple banking system. The relational
schema used by SmallBank++ is depicted in Fig. 7.

Fig. 7. Relational schema used by SmallBank++

SmallBank++ uses the same relational schema described in
Section II Case 3, but with one additional table: Mails. Each
row in the Mails table will represent a notification sent to a
customer even by the traditional posting service or by e-mail
reporting his or her current total balance. In SmallBank++ the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:7, 2014

1099International Scholarly and Scientific Research & Innovation 8(7) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

7,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
86

36
.p

df

following business rule must be enforced: a withdrawal can
be made from any of a customer’s account, even in case of
no sufficient funds, considering that the balance of the other
account can cover the remaining debt; the total balance of the
two accounts should never be negative and a customer mail
notification should never be processed twice for the same total
balance.

SmallBank++ consists of six transactional tasks:
1) Check balances — Checks the balance of the two

accounts of a customer.
2) Change savings account — Performs a deposit or

withdrawal from a customer’s savings account.
3) Change checking account — Performs a deposit or

withdrawal from a customer’s checking account.
4) Transfer of funds — Transfers the total balance available

in both accounts of a customer to the checking account
of another customer.

5) Cheque processing — Performs the clearing of a cheque
emitted by a customer.

6) Mail notification — Checks the total balance of a
customer and verifies if he or she has been notified about
it by looking for a corresponding entry in the Mails table.
A notification is sent to the customer only if the entry
does not exist.

Initially the benchmark system loads the database with one
thousand customers and their respective accounts. During this
process a random value between $0 and $10,000 is generated
for each customer, with half of this amount being allocated
to the savings account and the other half being assigned to
the checking account. The workload to be processed is then
divided into 10 steps (S1 to S10), where 100 transactional
tasks are executed in S1, 200 tasks are executed in S2, and
so on until S10 in which 1000 tasks are executed. In the
end a total of 5500 tasks are executed. Before the start of
each step, 10% of the customers are randomly chosen so that
90% of the tasks are executed on them (hotspots). About 50%
of the workload is set up by Task 1 (Check balances) and
the remainder is distributed with equal probability among the
other tasks, thus characterizing a 50% read to 50% read-update
ratio. The benchmark system then registers a concurrency error
for each unsuccessful attempt to commit. At the end of each
step, SmallBank++ verifies the balances of all accounts and
looks for unwanted sent mails in order to identify whether the
database has been taken to an inconsistent state.

The workload is processed first considering a single running
transaction. Soon after the database is cleaned and the
process of customers generation and their respective accounts
is executed again before a further workload is dispatched,
this time considering 8, 16, 32, 64, and 128 concurrent
transactions. In all cases the actions of each task are triggered
one at a time and in interleaved fashion according to the
number of currently running transactions.

Our first test ran on an instance of SQL Server 2012
Express Edition using READ COMMITTED, SNAPSHOT, and
SERIALIZABLE isolation levels. In the second test we ran
SmallBank++ on an instance of Firebird 2.5.2 using READ
COMMITTED, SNAPSHOT, and SNAPSHOT TABLE STABILITY
isolation levels. The SNAPSHOT TABLE STABILITY isolation

is different from the SNAPSHOT isolation in a way that
only one transaction can write into a table at a time.
In order to verify the efficiency of our technique, we
evaluated the SNAPSHOT isolation twice, with and without
DAEMON TRIGGERS. The serialization and inconsistency
graphs obtained from both tests are depicted in Fig. 8.

As we can see, there are no serialization errors or
concurrency anomalies (inconsistencies) when only one
transaction is running at a time, no matter what is the
isolation level in use. As the number of simultaneous running
transactions increases, chances are the ratios of serialization
errors and inconsistencies also increase. The only native
isolation level that ensures serializability on SQL Server is
SERIALIZABLE, which aborted about 28% of the 5500 tasks
when 128 transactions ran concurrently. An implementation of
DAEMON TRIGGERS on SQL Server brought the same level
of consistency but aborting less than 13% of the tasks. On the
other hand, in a concurrent environment on Firebird, about
50% of the tasks were aborted under its strongest SNAPSHOT
TABLE STABILITY isolation level, and yet the database
was taken to an inconsistent state. With 128 concurrent
transactions, the SNAPSHOT isolation aborted around 9% of
the tasks and some inconsistencies were also generated. By
using DAEMON TRIGGERS, this number increased to about
12% but the database remained consistent all the time. So, an
implementation of DAEMON TRIGGERS in SQL Server can
brought the same level of consistency as SERIALIZABLE but
providing a higher degree of concurrency. In turn, DAEMON
TRIGGERS in Firebird can even beat its strongest level of
isolation twice, first by aborting much less transactions and
second by ensuring only serializable histories.

The number of inconsistencies in the database when we use
the READ COMMITTED isolation is smaller in SQL Server
than it is in Firebird, but at the cost of a larger number
of serialization errors in SQL Server. This is because SQL
Server uses the Two-Phase Lock (2PL) protocol whereas
Firebird does not lock the data items a transaction reads.
On the other side, at least with regard to the SmallBank++
workload, the implementation of the SNAPSHOT protocol in
SQL Server resulted in a smaller number of serialization errors
and inconsistencies in the database.

V. RELATED WORK

In [4] a set of theoretical tools is presented in order to ensure
serialization under the SNAPSHOT isolation. The technique
is to initially make a static analysis of the transactions
in an application and identify every possible interleaved
execution that is not serializable. Fundamentally, the analysis
is based on the possibility of cycle occurrences in a direct
serialization graph [9] resulting from a potential history
involving all transactional tasks. Although the technique does
not require any change in the DBMS kernel, the possibility
of occurrence of a dangerous structure must lead to a change
in the application code and sometimes the database. Thus,
consistency is achieved by moving part of the responsibility
in dealing with competition issues from the DBMS to the
application. Our technique requires the definition of DAEMON

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:7, 2014

1100International Scholarly and Scientific Research & Innovation 8(7) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

7,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
86

36
.p

df

Fig. 8. Serialization and inconsistency graphs for SQL Server 2012 and Firebird 2.5.2

TRIGGERS based on business rules but leaves only the DBMS
as responsible for concurrency control.

The technique proposed in [10] and [11] to ensure
serialization is based on a lock mechanism outside a DBMS
transactional system. This additional software component is
named External Lock Manager and must also work together
with the application. DAEMON TRIGGERS keep the benefits
of the optimistic concurrency control system in SNAPSHOT by
not using locks. Moreover, the level of concurrency is better
considering that the writes of a transaction do not block the
reads of others.

SERIALIZABLE SNAPSHOT is an isolation mechanism able
to ensure serialization without any changes in application
code or database [12]–[14]. It is based on the SNAPSHOT
rules and the theory presented in [9] and [4]. Basically, the
algorithm looks for successive anti-dependencies related to
concurrent transactions, and when such pattern happens, one
of the transactions is aborted. The drawback of the algorithm
is that it needs to trace the data items a transaction reads and
writes. With DAEMON TRIGGERS we can achieve serialization
warranty the same way, but the management overhead occurs
only on written data.

The algorithm proposed in [7] and [15], PRECISELY
SERIALIZABLE SNAPSHOT, is also based in the theory
presented in [4], but the approach is aimed at the detection of
cycles in a dependency graph, where a transaction is aborted
during a commit phase in case a cycle is introduced. In this
case, the algorithm also needs to trace the data items that a
transaction reads and writes.

According to [2], the write-write conflict detection
mechanism used by SNAPSHOT, besides allowing some
non-serializable histories, unnecessarily reduces concurrency
precluding some serializable ones. Thus, the authors
question the effectiveness of the approach behind SNAPSHOT
highlighting that it is not sufficient, nor necessary, and
proposing an approach based on a read-write conflict
detection. Unlike the write-write approach, where only a
transaction reading phase is immune to concurrency, the
read-write approach also allows for the isolation of a
transaction writing phase, and for this reason the technique is
named WRITE-SNAPSHOT. But contrary to our approach, the
WRITE-SNAPSHOT algorithm imposes an overhead on both
read and written data items.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:7, 2014

1101International Scholarly and Scientific Research & Innovation 8(7) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

7,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
86

36
.p

df

VI. CONCLUSION

Considering the simplicity of the presented technique, it is
possible to build a new isolation level on top of the already
existent SNAPSHOT isolation: DAEMON SNAPSHOT. Together
with the new level, we need a statement to make non-structural
changes in a database schema by defining special entities
that establish relationships between those data items that
are under some constraint. These entities, named daemons,
would play the role of DAEMON TRIGGERS. Fundamentally,
a transaction running under the DAEMON SNAPSHOT isolation
level must behave like a transaction running under the
SNAPSHOT isolation, except that daemons would be raised
only for transactions under the DAEMON SNAPSHOT isolation.
The syntax proposed for the creation of daemons follows:
CREATE DAEMON daemon

ON table [(column[,...])]
KEY (column[,...]) REFERENCES table

(column[,...]) [WRITE]
KEY ... [;]

When creating a daemon we must specify its name and the
table it guards. The daemon will be raised for every row in the
table that has one of the columns specified in the ON clause
updated. In case no column is specified the daemon will be
raised for every written row in the table. The first KEY clause
defines the first data item to be reached, the possible second
KEY clause defines the second data item to be reached, and
so on. Ideally, the row updated by the application and the last
row reached by the daemon in the chain of KEY clauses would
be part of a business rule, so the identity write operation must
be specified only for the last reached row in the chain through
the WRITE clause. For the cases considered in this paper, we
would have the following daemons:
Case 1
CREATE DAEMON Accounts_d

ON Accounts (Balance)
KEY (Customer) REFERENCES People (Id)
KEY (Spouse) REFERENCES Accounts

(Customer) WRITE;
Case 2
CREATE DAEMON Tasks_d

ON Tasks (Hours)
KEY (Employee) REFERENCES Employees

(Id) WRITE;
Case 3 (Two daemons)
CREATE DAEMON SavingsAccounts_d

ON SavingsAccounts (Balance)
KEY (Customer) REFERENCES

CheckingAccounts (Customer) WRITE;
CREATE DAEMON CheckingAccounts_d

ON CheckingAccounts (Balance)
KEY (Customer) REFERENCES

SavingsAccounts (Customer) WRITE;

In this work, DAEMON TRIGGERS were applied to the
management of conventional data but the concept of a
DAEMON SNAPSHOT isolation can also be used in complex
data management systems, like object-oriented databases or
even cloud storage systems. Unlike the other isolation levels

proposed in the literature on top of SNAPSHOT, the data
management overhead imposed by our technique occurs only
on the data items a transaction writes. Due to this, DAEMON
SNAPSHOT becomes a potential candidate to be applied in
distributed systems where certain transactional tasks require
data consistency assurance.

ACKNOWLEDGMENT

The authors thank CAPES–PROPG for the support.

REFERENCES

[1] Ansi, “Ansi x3.135-1992, american national standard for information
systems — database language — sql,” American National Standards
Institute, Tech. Rep., 1992.

[2] M. Yabandeh and D. Gómez Ferro, “A critique of snapshot isolation,” in
Proceedings of the 7th ACM european conference on Computer Systems.
ACM, 2012, pp. 155–168.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A critique of ansi sql isolation levels,” ACM SIGMOD Record, vol. 24,
no. 2, pp. 1–10, 1995.

[4] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha, “Making
snapshot isolation serializable,” ACM Transactions on Database Systems
(TODS), vol. 30, no. 2, pp. 492–528, 2005.

[5] A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level
definitions,” in Data Engineering, 2000. Proceedings. 16th International
Conference on. IEEE, 2000, pp. 67–78.

[6] A. Fekete, E. O’Neil, and P. O’Neil, “A read-only transaction anomaly
under snapshot isolation,” ACM SIGMOD Record, vol. 33, no. 3, pp.
12–14, 2004.

[7] S. A. Revilak, “Precisely serializable snapshot isolation,” Ph.D.
dissertation, Office of Graduate Studies, University of Massachusetts
Boston, 2011.

[8] M. Alomari, M. Cahill, A. Fekete, and U. Rohm, “The cost of
serializability on platforms that use snapshot isolation,” in Data
Engineering, 2008. ICDE 2008. IEEE 24th International Conference
on. IEEE, 2008, pp. 576–585.

[9] A. Adya, “Weak consistency: a generalized theory and optimistic
implementations for distributed transactions,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1999.

[10] M. Alomari, “Ensuring serializable executions with snapshot isolation
dbms,” Ph.D. dissertation, University of Sydney, 2008.

[11] M. Alomari, A. Fekete, and U. Rohm, “A robust technique to
ensure serializable executions with snapshot isolation dbms,” in Data
Engineering, 2009. ICDE’09. IEEE 25th International Conference on.
IEEE, 2009, pp. 341–352.

[12] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable isolation
for snapshot databases,” ACM Trans. Database Syst., vol. 34,
no. 4, pp. 20:1–20:42, Dec. 2009. [Online]. Available: http:
//doi.acm.org/10.1145/1620585.1620587

[13] M. J. Cahill, “Serializable isolation for snapshot databases,” Ph.D.
dissertation, The University of Sydney, 2009.

[14] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable isolation
for snapshot databases,” in Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, ser. SIGMOD ’08.
New York, NY, USA: ACM, 2008, pp. 729–738. [Online]. Available:
http://doi.acm.org/10.1145/1376616.1376690

[15] S. Revilak, P. O’Neil, and E. O’Neil, “Precisely serializable snapshot
isolation (pssi),” in Data Engineering (ICDE), 2011 IEEE 27th
International Conference on. IEEE, 2011, pp. 482–493.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:7, 2014

1102International Scholarly and Scientific Research & Innovation 8(7) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

7,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
86

36
.p

df

