Polyacrylate Modified Copper Nanoparticles with Controlled Size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Polyacrylate Modified Copper Nanoparticles with Controlled Size

Authors: Robert Prucek, Aleš Panáček, Jan Filip, Libor Kvítek, Radek Zbořil

Abstract:

The preparation of Cu nanoparticles (NPs) through the reduction of copper ions by sodium borohydride in the presence of sodium polyacrylate with a molecular weight of 1200 is reported. Cu NPs were synthesized at a concentration of copper salt equal to 2.5, 5, and 10 mM, and at a molar ratio of copper ions and monomeric unit of polyacrylate equal to 1:2. The as-prepared Cu NPs have diameters of about 2.5–3 nm for copper concentrations of 2.5 and 5 mM, and 6 nm for copper concentration of 10 mM. Depending on the copper salt concentration and concentration of additionally added polyacrylate to Cu particle dispersion, primarily formed NPs grow through the process of aggregation and/or coalescence into clusters and/or particles with a diameter between 20–100 nm. The amount of additionally added sodium polyacrylate influences the stability of Cu particles against air oxidation. The catalytic efficiency of the prepared Cu particles for the reduction of 4-nitrophenol is discussed.

Keywords: Copper, nanoparticles, sodium polyacrylate, catalyst, 4-nitrophenol.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093080

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3402

References:


[1] J.S. Garitaonandia, M. Insausti, E. Goikolea, M. Suzuki, J.D. Cashion, N. Kawamura, H. Ohsawa, I.D. de Muro, K. Suzuki, F. Plazaola, T. Rojo, "Chemically induced permanent magnetism in Au, Ag and Cu nanoparticles: localization of the magnetism by element selective techniques”, NanoLett.,vol. 8,pp. 661-667, 2008.
[2] A.K. Patra, A. Dutta, A. Bhaumik, "Cu nanorods and nanospheres and their excellent catalytic activity in chemoselective reduction of nitrobenzenes”, Catal.Commun.Vol. 11,pp. 651-655, 2010.
[3] M. Samim, N.K. Kaushik, A. Maitra, "Effect of size of copper nanoparticles on its catalytic behaviour in Ullman reaction”, Bull. Mat.Sci.,vol. 30,pp. 535-540, 2007.
[4] Y. Choi, C. Lee, Y. Hwang, M. Park, J. Lee, C. Choi, M. Jung, "Tribological behavior of copper nanoparticles as additives inoil”, Curr. Appl.Phys.,vol. 9, E124-E127, 2009.
[5] M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, M.M. ul Hasan, "Investigations into the antibacterial behavior of nanoparticles againts Escherichia coli”, Ann.Microbiol.,vol. 60,pp. 75-80, 2010.
[6] A. Esteban-Cubillo, C. Pecharroman, E. Aguilar, J.Santaren, J.S. Moya, "Antibacterial activity of copper monodispersed nanoparticles into sepiolite”, J. Mater. Sci.,vol. 14,pp. 5208-5212, 2006.
[7] D.N. Muraviev, J. Macanas, M. Farre, M. Munoz, S. Alegret, "Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition devices”, Sens. Actuator B-Chem.,vol. 118,pp. 408-417, 2006.
[8] C.W. Wu, B.P. Mosher, T.F. Zeng, "One-step green route to narrowly dispersed copper nanocrystals”, J.Nanopart. Res.,vol. 8,pp. 965-969, 2006.
[9] X. Cheng, X. Zhang, H. Yin, A. Wang, Y. Xu, "Modifier effects on chemical reduction synthesis ofnanostructured copper”, Appl. Surf. Sci., vol. 253,pp. 2727-2732, 2006.
[10] V. Mancier, C. Rousse-Bertrand, J. Dille, J. Michel, P. Fricoteaux, "Sono and electrochemical synthesis and characterization of copper core-silver shell nanoparticles”, Ultrason.Sonochem.,vol. 17,pp. 690-696, 2010.
[11] A. Henglein, "Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu(CN)(2)(-)”, J. Phys. Chem.B,vol. 104 pp. 1206-1211, 2000.
[12] H.T. Zhu, C.Y. Zhang, Y.S. Yin, "Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation”, J.Cryst. Growth, vol. 270, pp. 722-728, 2004.
[13] R.M. Tilaki, A.I. Zad, S.M. Mahdavi, "Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids”,Appl. Phys. A-Mater. Sci. Process.,vol. 88, pp. 415-419, 2007.
[14] C. Silva, J.M.P. Coelho, A.Ruivo, A.P. de Matos,"Infrared nanosecond laser effects on the formation of copper nanoparticles”, Mater.Lett.,vol. 64,pp. 705-707, 2010.
[15] R.M. Zhou, X.F. Wu, X.F. Hao, F. Zhou, H.B. Li, W.H. Rao, "Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation”, Nucl.Instrum. Methods Phys. Res.B,vol. 266, pp. 599–603, 2008.
[16] C. Salzemann, A. Brioude, M.P. Pileni, "Tuning of copper nanocrystals optical properties with their shapes”, J. Phys. Chem.B,vol. 110,pp. 7208-7212, 2006.
[17] X.Y. Song, S.X. Sun, W.M. Zhang, Z.L. Yin, "A method for the synthesis of spherical copper nanoparticles in the organic phase”, J. Colloid InterfaceSci.,vol. 273,pp. 463-469, 2004.
[18] M.J. Guajardo-Pacheco, J.E. Morales-Sanchez, J. Gonzalez-Hernandez, F. Ruiz, "Synthesis of coppper nanoparticles using soybeans as a chelant agent”, Mater.Lett.,vol. 64, pp. 1361-1364, 2010.
[19] M. Aslam, G. Gopakumar, T.L. Shoba, I.S. Mulla, K. Vijayamohanan, S.K. Kulkarni, J. Urban, W. Vogel, "Formation of Cu and Cu2O nanoparticles by variation of the surface ligand: Preparation, structure, and insulating-to-metallic transition”, J. Colloid Interface Sci.,vol. 255 (2002) 79-90
[20] X.N. Cheng, X.F. Zhang, H.B. Yin, A.L. Wang, Y.Q. Xu, "Modifier effects on chemical reduction synthesis ofnanostructured copper”, Appl. Surf. Sci.,vol. 253, pp. 2727-2732, 2006.
[21] R. Prucek, L. Kvítek, A. Panáček, L. Vančurová, J. Soukupová, D. Jančík, R. Zbořil, "Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(I) oxide nanocubes with high catalytic efficiency”, J. Mater. Chem.,vol. 19,pp. 8463-8469, 2009.
[22] I. Lisiecki, F. Billoudet, M.P. Pileni, "Control of the shape and the size of copper metallic particles”, J. Phys. Chem.,vol. 100,pp. 4160-4166, 1996.
[23] R. Delhez, T. H. de Keijser, J.I. Langford, D. Louër, E. J. Mittemeijer, E. J. Sonneveld, "Crystal imperfection broadening and peak shape in the Rietveld method”, In Young, R.A. (Ed.) The rietveld method, Oxford University Press 1995, pp. 132-166.
[24] J. Filip, R. Zbořil, O. Schneeweiss, J. Zeman, M. Černík, P. Kvapil, M. Otyepka, "Environmental applications of chemically-pure natural ferrihydrite”, Environ. Sci.Technol.,vol. 41, pp. 4367-4374, 2007.
[25] N. Cabrera, N.F. Mott, "Theory of the oxidation of metals”, Rep.Prog.Phys.,vol. 12,pp. 163-84, 1948.
[26] N.Pradhan, A. Pal, T. Pal, "Silver nanoparticle catalyzed reduction of aromatic nitro compounds”, Colloid Surf. A,vol. 196, pp. 247–257, 2002.
[27] N.Pradhan, A. Pal, T. Pal, "Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles”, Langmuir, 17,pp. 1800-1802, 2001.
[28] Y. Lu, Y. Mei, M. Ballauff, M. Drechsler, "Thermosensitive core-shell particles as carrier systems for metallic nanoparticles”,J. Phys. Chem. B,vol. 110,pp. 3930-3937, 2006.
[29] Y. Lu, Y. Mei, M. Schrinner, M. Ballauff, M.W. Moller, "In Situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation”, J. Phys. Chem. C, vol. 111 (2007) 7676-7681
[30] Y. Lu, Y. Mei, M. Drechsler, M. Ballauff, "Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks”, Angew.Chem., vol. 45 (2006) 813-816
[31] Y. Lu, P. Spyra, Y. Mei, M. Ballauff, A. Pich, "Composite hydrogels: robust carriers for catalytic nanoparticles”, Macromol. Chem.Phys.,vol. 208,pp. 254-261, 2007.
[32] K. Esumi, R. Isono, T. Yoshimura, "Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol”, Langmuir, vol. 20,pp. 237-243, 2004.
[33] M.Schrinner, F. Polzer, Y. Mei, Y. Lu, B. Haupt, M. Ballauff, A. Goldel, M. Drechsler, J. Preussner, U. Glatzel, "Mechanism of the formation of amorphous gold nanoparticles within spherical polyelectrolyte brushes”, Macromol. Chem. Phys.,vol. 208,pp. 1542-1547, 2007.
[34] K. Kuroda, T. Ishida, M. Haruta, "Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA”, J. Mol. Catal. A-Chem.,vol. 298, pp. 7-11, 2009.
[35] J.C. Liu, G.W. Qin, P. Raveendran, Y. Kushima, "Facile "green" synthesis, characterization, and catalytic function of beta-D-glucose-stabilized Au nanocrystals”, Chem. Eur. J.,vol. 12,pp. 2132-2138, 2006.
[36] Y. Mei, Y. Lu, F. Polzer, M. Ballauff, M. Drechsler, "Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels”, Chem. Mater.,vol. 19,pp. 1062-1069, 2007.
[37] S. Harish, J. Mathiyarasu, K. Phani, V. Yegnaraman, "Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction”, Catal.Lett.,vol. 128,pp. 197-202, 2009.
[38] Y. Mei, G. Sharma, Y. Lu, F. Polzer, M. Ballauff, M. Drechsler, T. Irrgang, R. Kempe, "High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes”, Langmuir,vol. 21,pp. 12229-12234, 2005.
[39] S.K. Ghosh, M. Mandal, S. Kundu, S. Nath, T. Pal, "Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution”, Appl.Catal. A-Gen,vol. 268, pp. 61–66, 2004.
[40] H. Rashid, R. R. Bhattacharjee, A. Kotal, T. K. Mandal, "Synthesis of spongy gold nanocrystals with pronounced catalytic activities”, Langmuir,vol. 22,pp. 7141-7143, 2006.