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Design of a Reduced Order Robust Convex
Controller for Flight Control System

S. Swain, P. S. Khuntia

Abstract—In this paper an optimal convex controller is designed
to control the angle of attack of a FOXTROT aircraft. Then the order
of the system model is reduced to a low-dimensional state space by
using Balanced Truncation Model Reduction Technique and finally
the robust stability of the reduced model of the system is tested
graphically by using Kharitonov rectangle and Zero Exclusion
Principle for a particular range of perturbation value. The same
robust stability is tested theoretically by using Frequency Sweeping
Function for robust stability.

Keyword—Convex Optimization, Kharitonov Stability Criterion,
Model Reduction, Robust Stability.

1. INTRODUCTION

HE main problems of flight control system are due to the

nonlinear  dynamics, modeling uncertainties and
parametric variations. Generally an aircraft moves in a three
dimensional plane by controlling the three control surfaces
aileron, rudder and elevator. These three control surfaces
control the motion of the aircraft about the roll, pitch and yaw
axes. The elevators of an aircraft control the orientation of the
aircraft by changing the pitch and the angle of attack of the
aircraft. Though a lot of works have been done to control the
angle of attack, still it is an open issue which is discussed in
the present work. Not only the designed controller is required
to offer satisfactory performance in terms of controlling the
angle of attack, but also the system model has to be robust
stable for a wide range of change in parametric values of
closed loop transfer function. Alireza Karimi, Hamid Khatibi
and Roland Longchamp synthesize the robust control of linear
time-invariant SISO polytopic systems using the polynomial
approach [1]. Kin Cheong Sou, Megretski, A. and Daniel, L
proposed a Quasi-Convex optimization approach to
Parameterized Model Order Reduction (MOR) framework [2].
V. L. Kharitonov in 1978 found out asymptotic stability of a
family of systems for an equilibrium position with help linear
differential equations [3]. Kharitonov theorem also provides
the necessary and sufficient conditions for checking the robust
stability of dynamic system with fractional order interval
systems [4]-[6]. Fu. M. developed a simple approach which
unifies and generalizes a class of weak Kharitonov regions for
robust stability of linear uncertain systems [7]. Jie Chen
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considered robust stability problem for interval plants in the
case of single input (multi-output) or single output (multi-
input) systems using a generalization of V.L. Kharitonov’s
theorem [8]. Bevrani, H. designed a robust proportional-
integral-derivative (PID) feedback compensator for better
stability and robust performance of a radio-frequency
amplifier with wide range parameter variation [9]. R.J.
Bhiwani and B.M. Patre analyse the robust stability feedback
controller synthesis can be tested using Kharitonov’s theorem
for fuzzy parametric uncertain systems [10]. Toscano and
Lyonnet synthesized a feedback controller to obtain robust
static feedback using evolutionary algorithm [11].

In this paper an optimal convex controller is designed using
convex optimization technique to control the angle of attack
[12], [13] of FOXTROT aircraft. Then the order of the system
model is reduced by using Balanced Truncation technique to a
low dimensional state space [14], [15]. Finally the robust
stability [16]-[18] of the reduced model is tested graphically
by using Kharitonov rectangle & Zero Exclusion Principle for
a parametric perturbation 'n’ and theoretically by using

Frequency Sweeping function for robust stability. In this work

’ !

' is allowed to increase up to a particular value below

which the system model is found to be robust stable by
establishing the Kharitonov polynomials to be Hurwitz.

Increasing beyond this value of ’M’ further the system model

is not robust stable resulting non Hurwitz Kharitonov
polynomials. It is also shown that the Kharitonov rectangle
does not include zero within it thereby verifying the interval
polynomial family to be robust stable for all frequencies

® > O resulting H((o) to be positive real [19]

II. KHARITONOV INTERVAL POLYNOMIALS
Consider an n-th order polynomial [3] of the form given by
for all

thata, =a, —p,a, =a, +n, where p= the perturbation in

p(s)=s"+a, ;8" ++a, ag,--a,, such

parametric values.
Let the polynomials be defined as

n
_ -2 4 _ ko (k. k= )| .k
gl(s)_go+azs +g4s 4o = Z ] ml}’l{] gk’J ak}'s
k=0,even
= 2,24 ok Kk, k= | ok
gz(s): 0TS  +aus +er = Z j,max{j a,.,] ak}.s
k=0,even
n
hy(s)=a, +3s° +ags’ +- = D) jk’l.min{jk’l gk,jkflak}.sk
k=1,0dd
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_= 3,75 S e el del—
hy(5) = Tis+ass’ 435" 4 = 3l 15,
k=1,0dd

Now, the Kharitonov polynomials are given by

ky (s) =g (s) +h, (s)

where k,1=1,2
For k=1 and 1=1
kn(s)zgl(s)+h1(s) (1)
For k=1 and 1=2
klz(s):gl(s)Jrhz(s) )
For k=2 and 1=1
Ky, (s) =g, (s)+h1 (s) 3)

For k=2 and 1=2
k5, (s):g2 (S)+h2 (s) 4)

The above set of polynomials kn(s),ku (s),kZI(s) and

k,, (s) are said to be Hurwitz if and only if its every member

is Hurwitz. These polynomials are called Kharitonov Interval
polynomials.

III. ANGLE OF ATTACK

Angle of attack [12], 13] specifies the angle between the
chord line of the wing of a fixed-wing aircraft and the vector
representing the relative motion between the aircraft and the

atmosphere. The angle of attack((l) of an aircraft is controlled
by the deflection in control surface (Elevator). Fig. 1 below
shows the description of angle of attack of an aircraft.

Lift

Chord
T Line

-

Resultant Force

Angle of Attack
Relative wind _
Centre of Pressure "~
Fig. 1 Description of angle of attack of an aircraft
A. Block Diagram of Angle of Attack Control System
The block diagram for angle of attack is shown in Fig. 2
below in which the input is the deflection of elevator (SE) as

commanded by the pilot and the output is the desired angle of
attack (OL) .
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Fig. 2 Block Diagram of Angle of Attack Control System
In Fig. 2,
O (S) = Deflection of elevator as commanded by the pilot
a S) = The desired angle of attack of the aircraft

(
G(s) = Transfer function between dj and o
(

Q

s) =Convex controller to be designed

)
U(s) =Output of controller

B. Transfer Functions between &y and o

The short period approximation [12] consists of assuming
any variations in speed (u) of the aircraft which arise in air
speed as a result of control surface deflection and atmospheric
turbulence is so small that any terms in the equation of motion
involving u are negligible. In other words, the approximation
assumes that short period transients are of sufficiently short
duration resulting constant speed U, of the aircraft i.e. u=0.

Thus, the equations of longitudinal motion in terms of stability
may now be written as:

q=wM,, +v'va +qM, +M; 8¢

= (My + My Zy, )w + (Mg + UgMyg )a +(Mj, +2; My, )3y, (6)

w
If the state vector for short period motion is Xé{ q} and

the control vector ‘u’ is taken as the deflection of the elevator

Sk » then (5) and (6) may be written as a state equation:
x = Ax+Bu 7

In (7), the values of A and B are

Zw UO
A=
(M, +MZ,) (Mg+UgM, )
B= “o
(M5E + Z5EMW )
s—7Z, -Up
[sI-A]=

~(M,, +M,Z,) [s—(Mq + UM, )}
Agp (s) =det[sI—A]
=5’ =[Z, + M+ UM, Js+[Z, M, = UM, |
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®)

=57 + 28 ¢pOpS + Ogp
In (8), 2&gpap =Z,, + My + UM,

1

ogp =[ Z,My = UM, ]2

On simplifying the above equations, the transfer functions
between w and J is given by

8Ls
UM -M_ Z +——
( ’ 6E ) SE ){ ’ U0M5E _MqZSE }
Agp (s)
K, (1+sT))
Agp (s)

w(s)

o)

©

Zs
In(9), T, = < =

K, =UyM; -M,Z;

w

()= )

. w
Again, oo =—,0(s

: 0, and w(s)=Ugo(s)

Substituting the value of W(s) in (9), we get

a(s)
8 (s)

Using the values of the stability derivatives [12] as shown
in Appendix-I and substituting these values in (10), the

transfer function G(S) between 6p and o for the flight

_ K, (1+5T)) 10)
UpAgp ()

condition-1 is given by

G(s)— 2.0302s+102.8 3.604s +182.5

= = g 11)
s2+0.901s+0.5633  1.775s% +1.598s +1

IV. DESIGN OF OPTIMAL CONVEX CONTROLLER

It is a controller that uses convex optimization for
controlling a linear system. The analysis and design of linear
control systems is based on numerical convex optimization
[20] over closed-loop maps. Convexity makes numerical
solution effective i.e.it determines whether a given set of
specifications is achieved by the controller or not.

The internal stability of a system is a closed loop affine

constraint i.e. if the controllersK andK each stabilize the

plant P and yield closed-loop transfer matrices H and H
respectively, then for each A € R there is a controller given by

Hx(s)zkH(s)Jr(l—?u)fI(s)
Here two PI
K(s)=60+90/s and K(s)=18+81/s are considered which

(12)

(Proportional-Integral)  controllers
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individually stabilize the plantG . With ‘K ’ in the loop, the

transfer matrix from 8y to [a,u]T is given by

216.2s% +11270s +1.6420
1.775s% +217.8s> +1.1280s +1.6420
106.55° +255.6s> +203.85 +90
1.775s +217.8s> +1.1280s +1.6420

H(s): (13)

Similarly, with H in the loop the closed loop transfer matrix
is given by

64.87s> +3577s+1.4780
1.7758> +66.47s> +3578s +1.4780
31.958% +172.6s +147.4s +81
1.7758> +66.47s +3578s +1.4780

H(s)= (14)

Substituting the value of H(S) from (13) and the value of

ﬁ(s) from (14) in (12), we get

R 216.25 +11270s +1.6420
H; (s)=AH(s)+(1=A)H[s] _, | 1.7755 +217.857 +1.1280s +1.6420
106.5s% +255.65% +203.8s+ 90
1.775s +217.8s> +1.1280s +1.6420
64.87s% +3577s+1.4780
1.775s% +66.47s% +3578s +1.4780
31.958% +172.6s% +147.4s + 81
1.775s> +66.47s% +3578s +1.4780

+(1-2) (15)

A. Closed Loop Step Response for Flight Condition-1

The step responses from & to o for K and K are shown in
Fig. 3 (a) and the corresponding step response from & to u
are shown in Fig. 4 (a). Fig. 3 (b) shows the closed- loop step
responses fromdgto o with six different values of A
generated by K andK . Similarly, Fig. 4 (b) shows the closed-
loop step responses from &y to u with six different values of
A.

Amplitude

0.1 0.15

Time (sec)

(a)
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Amplitude

01 0.15 02 025
Time (sec)

(®)
Fig. 3 Closed-loop step response achieved by one family of
stabilizing controllers from Sy to O

Amplitude
=)

Time (sec)

@

Amplitude

01 0.15 02 0.25
Time (sec)

(b)
Fig. 4 Closed-loop step response achieved by one family of
stabilizing controllers from &y tou

From Fig. 4, the optimum value of 'A’ for the angle of

attack "o’ is found to be A, =1.2 and that for controller

optal
output 'u’ is found to be Ay, =0.25. The closed-loop

transfer matrix for the angle of attack 'o ' is given by

H;, ()= hopaH(8)+ (1= Doy JH(s) — (16)

Similarly, the closed-loop transfer matrix for the controller
output 'u’is given by

Hy,,, (5) = MopuH (8)+ (12 JH(s)  (17)
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Substituting the value of A, =1.2 in (16), we get

opta

H, . (s)=H,,(s)=12xH(s)+(1-12)H(s)

{ 216.25> +11270s +1.6420 }

1.775s% +217.8s% +1.1280s +1.6420

+(1-12) 64.87s> +3577s +1.4780
1 1.7755 +66.47s% +3578s +1.4780

437,68 +37170s* +15550005 +446300005° +2254000005 + 242800000
3.1525° +504.75° +40850s* +1584000s* +446500005° -+2254000005 -+242800000

= Hkoptoc (S) = HLZ (S)

43765 +371705* +15550005° + 46300005 -+ 225400000-+ 242800000
315260 4504 75° -+408505 + 15840005 + 4465000052 + 2254000005 + 242800000

(18)

Again, substituting the value of A, =0.25 in (17), we get

H, . (s)=Hyos =0.25xH(s)+(1-0.25)H(s)

0 106.5s” +255.6s% +203.85 +90
T 177587 +217.85% +1.1280s +1.6420

3 2
+(1—o.25)[ 31.958% +172.65% +147.4s + 81 }

1.775s° +66.47s* +3578s +1.4780
21568 +75875° +3985005" +25030005° +45140005” +33350005 +1330000
3.1525° +304 75> +408505" -+15840005 -+446500005” + 2254000005+ 242800000
HMptu (s) =H, ;s (s)
21568+ 75875 +3985005" + 25030005’ +45140005" +33350005-+1330000
3,1525° +5047” +408505* +15840005° +446500005” +2254000005-+242800000

(19)

For every AeR there is a controller K, that yields closed

loop transfer matrix H, is given by

A K(s)=R(s) |+ R(s)[1+G (s)K s)]
K

K, = — (20)
[1+G, (5)K (5)]+2G ()[R () - K (5) ]
For A = X, » the convex controller for the angle of attack is
given by
R | K(5) =K (5) [+ R(s)[14G, (5)K (5)]
.=

For A 1.2

E

opta. =
K _ 12145" +41645’ + 2207005 +12090005-+1330000 @n
Ko K12 1775 436 165° +2034s + 144548
Therefore, the optimum value of A which yields closed loop
=12,

transfer matrix H, is kom
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V.MODEL ORDER REDUCTIONS

There are many advantages to work with models with low-
dimensional state space. Low-dimensional models are easier
to analyze, much faster to simulate and requires lesser hard
works for synthesis of controller [14]. Model reduction
methods have been used successfully to solve large-scale
problems in areas such as control engineering, signal
processing, image compression, fluid mechanics, and power
systems. From (18),

H. (s) =I—§l(s)
437,68 +371705* +15550005° +446300005° + 2254000005+ 242800000

31555+ 50475 +40R505" +1 5840005 -+HG300005 -+ 2254000005+ 242800000 22)

By using Balanced Truncation Model Reduction Technique,
the above model H,, in (22) may be reduced to a new model

given by

00008368 +139.35 +106005 +4088005-+ 10600000
s*+152 18" +116305 +4097005-+10600000

H,(s) (23)

VI. ROBUST STABILITY OF REDUCED SYSTEM MODEL

The characteristic equation for FC-1 is obtained from (23)
asp; (s) =1+G(s) C(s) =s* +152 15’ +116505° +4097005+10600000. The

perturbation in parametric value of p(s) ie. ,uy is allowed to

increase from up to 20% and the Kharitonov polynomials for
FC-1lare found out using (1) to (4) are as follows:

K11(s) =8480000s" +327760s’ +13980s” +182.525+0.8

) (24)
) =12720000s" + 3277605’ +93205” +182.525+1.2

K22(s) =127200005* +4916405> +93205” +121.68s+1.2

These above polynomials are tested for Hurwitz using
Routh Hurwitz Criteria and found out to be Hurwitz
Polynomials by establishing the coefficients in first column
are positive. If the perturbation is further allowed beyond the

above value of I},L, the polynomials are found not to be

Hurwitz resulting the coefficients to be negative. Thus it is
concluded that the designed controller along with the plant
transfer function (angle of attack) discussed here is robust
stable up to the perturbation range of 20%.

A. Kharitonov Rectangle and Zero Exclusion Principle for
Interval Families (Graphical Testing of Robust Stability)

An interval polynomial family having invariant degree and
at least one stable variable is robustly stable if and only if the
origin of the complex plane is excluded from the Kharitonov
rectangle at all non-negative frequencies ie. for all
frequencies > 0. The four vertices of Kharitonov rectangle

K”(jooo),Klz(jmo),KZI(jOJO) and Kzz(joao) are obtained
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by substituting s = jw, in (24) for FC-1, at a fixed frequency
®, =2.The Kharitonov rectangles for FC-1 at w,=2 is

shown in Fig. 5 below.

2.4

Ki2ijeg ) Kilijeg)

-2.6

28

32

3.4

Imaginary Axis

3.6

38

K21(jog )

<42 -
13 14 15 16 17 18 19 2 21

Real Axis x10°

Fig. 5 Kharitonov rectangle for FC-1 at ®, = 2

However, the size and the position of the Kharitonov
rectangle may change with wbut the sides of the rectangle
remain parallel to the respective real and imaginary axis.

B. Frequency Sweeping Function for Robust Stability
An interval polynomial family is robustly stable if and only
if H((D) 20 for all frequencies ® >0 where

ReK, (jo)
—ReK, (jo)
ImK,,; (j(o)
—ImK,, (jo)

H((D) = max

For FC-1
Substituting s = jo in (24), we get

84800000* —327760j0° —13980c” +182.52jm+0.8

Ky (jCO) =
K, (joo) = 84800000>" —491640j0” —13980cs” +121.68jco+0.8
Ky, (joo) =1272000000" ~327760jcr’ —93200y” +182.52j+1.2

Ky, (joo) = 127200000 —491640jcr’ —932000" +121.68jeo+1.2

ReK; (jo)= 84800000 —13980c” +0.8
ReK,, (jo)=84800000" —139800° +0.8
ImK,, (jo)=-3277600" +182.52e
ImKy, (jo)=-4916400" +121.680

It is clear from the above equations that, for any
frequencies > 0, the value of H((D) 20 and the family of

interval polynomial is robustly stable. Thus it is concluded
that the designed controller not only offers the desired angle of
attack but also produce robust stability.
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APPENDIX
TABLEI
STABILITY DERIVATIVES OF LONGITUDINAL DYNAMICS OF FOXTROT
AIRCRAFT
. L Flight Condition(FC)
Stability Derivatives
FC-1 FC-2 FC-3
U, (ms‘1 ) 70 265 350

X, -0.012 -0.009 -0.0135
Xw 0.14 0.016 0.006

Z, -0.117 -0.088 0.0125

Z, -0.452 -0.547 -0.727

Zy -0.76 -0.88 -1.25
M, 0.0024 -0.008 0.009

M,, -0.006 -0.03 -0.08
MW -0.002 -0.001 -0.001
M, 0317 -0.487 -0.745

X5, 1.83 0.69 0.77
Zs, 2.03 -15.12 2755
M;, -1.46 -11.14 -20.07
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