Target and Equalizer Design for Perpendicular Heat-Assisted Magnetic Recording

P. Tueku, P. Supnithi, R. Wongsathan

Abstract—Heat-Assisted Magnetic Recording (HAMR) is one of the leading technologies identified to enable areal density beyond 1 Tbit/in² of magnetic recording systems. A key challenge to HAMR designing is accuracy of positioning, timing of the firing laser, power of the laser, thermo-magnetic head, head-disk interface and cooling system. We study the effect of HAMR parameters on transition center and transition width. The HAMR is model using Thermal Williams-Comstock (TWC) and microtrack model. The target and equalizer are designed by the minimum mean square error (MMSE). The result shows that the unit energy constraint outperforms other constraints.

Keywords—Heat-Assisted Magnetic Recording, Thermal Williams-Comstock equation, Microtrack model, Equalizer.

I. INTRODUCTION

The proliferation of digital content creation and consumption brings an increasing demand for data storage devices, such as the hard disk drive (HDD). This demand drives requires increasing storage capacity, which in turns drives increasing growth in areal density (AD). AD is defined as the number of bits stored in a bit area of medium and it is determined by the average size of the grains and the number of grains that is used to store 1 bit of information. To increase the AD, the magnetic grain size must be reduced and to maintain the right levels of signal to noise ratio (SNR), the number of grains per bit must be constant. However, small grains will face thermal instability problem. To remedy this issue, media need to have high coercivity (H_c) which means anisotropy (K_u) is high and, therefore, it is difficult to write data bits because the current write field limitation. The HAMR system has many thermal issues compared to the conventional magnetic recording. Hence, each work step and the whole system need to be researched and clarified, as well as improving the stability and reliability of the system against thermal issues. The HAMR channel model has recently been investigated and the read process of the conventional read channel models employed in current magnetic recording systems has been used to produce the HAMR playback signals, as in [4]-[11].

The organization of this paper is as follows. In Section II, we will describe the principles of perpendicular HAMR systems using the Thermal Williams-Comstock (TWC) model, transition parameters and the microtrack modeling to determine the transition characteristics of both large and non-large spot laser. Next in Section III, we will propose the target and equalizer by the minimum-mean squared error (MMSE) method. Then, the simulation and results is discussed in Section IV. Finally, the conclusion will be made in Section V.

II. PERPENDICULAR HEAT-ASSISTED MAGNETIC RECORDING

References [4], [5] show the longitudinal HAMR with large spot approximation is used to simplify the equation but it is only valid if the assumptions are fulfilled. Large spot approximation is also used for the perpendicular HAMR, as in [6]. References [7], [9] show the perpendicular channels with non-large spot approximation are used to simulate the channel model. A linear relationship for remanent magnetization M_r and coercivity H_c with temperature is assumed to be used in [4]-[7] and [9] but as in [10], the non-linear relationship for M_r can overcome the write field limitation (2.45T) by temporarily reducing H_c during the write process by heating the medium. That means K_u is also reduced and the energy barrier to write on the medium is also decreased. The medium is then rapidly cooled down to the room temperature after magnetization completed, where thermal stability is acceptable.

HAMR system has many thermal issues compared to the conventional magnetic recording. Hence, each work step and the whole system need to be researched and clarified, as well as improving the stability and reliability of the system against thermal issues. The HAMR channel model has recently been investigated and the read process of the conventional read channel models employed in current magnetic recording systems has been used to produce the HAMR playback signals, as in [4]-[11].

The organization of this paper is as follows. In Section II, we will describe the principles of perpendicular HAMR systems using the Thermal Williams-Comstock (TWC) model, transition parameters and the microtrack modeling to determine the transition characteristics of both large and non-large spot laser. Next in Section III, we will propose the target and equalizer by the minimum-mean squared error (MMSE) method. Then, the simulation and results is discussed in Section IV. Finally, the conclusion will be made in Section V.

P. Tueku is with the International College, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520 Thailand (phone: 663-527-7345; fax: 663-527-7955; e-mail: S2600622@kmitl.ac.th).

P. Supnithi is with the School of Telecommunications Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520 Thailand (e-mail: ksuporn@kmitl.ac.th).

R. Wongsathan is with the Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520 Thailand (e-mail: s4610146@kmitl.ac.th)
and H_c with temperature T is assumed instead. In this paper, we use the TWC equation for perpendicular HAMR with non-large spot approximation by using linear relationship for M_e and H_c with T to investigate and understand the HAMR system performance.

A. Williams-Comstock (WC) Model

In 1971, Mason Williams and Larry Comstock developed the Williams-Comstock (WC) model to predict the transition width in longitudinal magnetic recording, as in [13]. They provide a simple analysis of the write process. WC model is a well-known approximate analytical model which describes the transition characteristics in a conventional magnetic recording system. In the model, the “zigzag” nature of magnetic transition is ignored and the shape of magnetic transition is presumed to be described by the arctangent function. The transition center is assumed instead. In this paper, H_c is simply the linear slope and S^* is coercivity squareness factor.

\[
\frac{dM(x)}{dx} = \frac{dM(h)}{dh} \left| \frac{dh(x)}{dx} \right|_{x_0}.
\]

(4)

B. Thermal Williams-Comstock (TWC) Model

$F_{loop}(H_c)$ in WC model does not account for the effects of heating in HAMR system. In 2004, WC model was extended by incorporating thermal gradients of coercivity H_e and magnetization M for a longitudinal HAMR system and is known as the Thermal Williams–Comstock (TWC) model, as in [4]. The effective field (h) is introduced to account for heating behavior, i.e.,

\[
h(x) = \frac{H_d(x)}{H_e(T(x))}.
\]

(5)

The dependence of M on the temperature captured by h in (4) is substituted into $M=F_{loop}(h)$. Evaluating the derivative of $M(x)$ at x_0, where the applied field is equal to coercivity H_e, we obtain

\[
\frac{dM(x)}{dx} \bigg|_{x_0} = \frac{dM(h)}{dh} \left| \frac{dh(x)}{dx} \right|_{x_0}.
\]

(6)

The derivative at the H_e is simply the linear slope and S^* is coercivity squareness factor.

\[
\frac{dM(x)}{dx} \bigg|_{H_e(T(x_0))} = \frac{M(T(x_0))}{1-S^*(T(x_0))} = \frac{H_e(T(x_0))dM(H)}{H_e(T(x_0))}.
\]

(7)

Since dM/dx and dH/dx depend on a, a can be solved by using (4). To obtain dM/dx, it is assumed that the transition during recording can be described by the arctangent function from which dM/dx can be derived.

\[
M(x) = \frac{2M_s(T(x))}{\pi} \tan^{-1} \frac{x-x_0}{a}
\]

(8)

and dM/dx at x_0 can be solved by differentiating (8), i.e.,

\[
\frac{dM(x)}{dx} \bigg|_{x_0} = \frac{2M_s(T(x_0))}{\pi a}.
\]

(9)

The term $dM(h)/dh$ from (5) at x_0 can be solved as slope of hysteresis loop is always positive at either transition is made from positive or negative H_e.
The term $\frac{dM}{db}$ of perpendicular recording at x_0 can be solved by using and the symmetry of the longitudinal Karlqvist head field component. The perpendicular head field can be derived by facilitating to turned sideways of longitudinal as

$$H_h = \frac{H_0}{\pi} \tan^{-1}\left(\frac{y+g/2}{x}\right) - \tan^{-1}\left(\frac{y-g/2}{x}\right),$$ \hspace{1cm} (11)

and

$$H_s(x) = \frac{-gH_0}{\pi}\left(x^2 + (g/2)^2 \right),$$ \hspace{1cm} (12)

where H_0 is the deep gap field, g is the gap width between pole head and its image ($g = 2d + 2t$), t is the medium thickness and the field is evaluated at the center of medium ($y = t/2$). The parameter H_s for perpendicular recording is obtained by convolving the unit step response at the original and the magnetization gradient, i.e.,

$$H_{d,\text{perp}} = -\frac{\partial M(x)}{\partial x} \ast H_s = -\frac{\partial M(x)}{\partial x} \ast \frac{1}{\pi} \tan^{-1}\left(\frac{2x}{t}\right).$$ \hspace{1cm} (13)

$$\frac{dH_s(x)}{dx} = \frac{4}{\pi^2} \int_{x_a}^{x_r} \frac{M_s(T(x'))dx'}{t^2 + 4(x-x')^2}.$$ \hspace{1cm} (14)

Here, H_c and M_s are linearly temperature-dependent (T), i.e.

$$H_c = -H_{c,0}T(x,y) + H_{c,\text{const}}$$ \hspace{1cm} (15)

$$M_s = -M_{s,0}T(x,y) + M_{s,\text{const}}$$ \hspace{1cm} (16)

where $H_{c,0}$ and $M_{s,0}$ are the temperature sensitivities of H_c and M_s, $H_{c,\text{const}}$ and $M_{s,\text{const}}$ are H_c and M_s at 0 Kelvin (K). So dH_{c}/dT is $-H_{c,0}$ and dM_{s}/dT is $-M_{s,0}$. A two-dimensional (2D) Gaussian thermal profile is given as

$$T(x,z) = T_{\text{peak}} \exp \left(-\frac{(x-x_0)^2}{2\sigma_t^2}\right) \exp \left(-\frac{z^2}{2\sigma_z^2}\right) + 300 \ \text{K}$$ \hspace{1cm} (17)

where T_{peak} is the peak temperature in the medium above room temperature in degree Celsius, x_0 is the laser spot position, x is defined to the position in down-track direction and z is defined to the position in cross-track direction. Differentiating (17), we have

$$\frac{d}{dx} \left[T(x,z) \right] = \frac{gH_0}{\pi}\left(x^2 + (g/2)^2 \right) \frac{2xt}{(x^2 + (g/2)^2)^2}.$$

C. Transition Center (x_0) and Transition Parameter (a)

The position x_0 is defined as the point where the medium reverses its direction of magnetization and a is measured and related to the width of the magnetization transition. Achieving the narrowest possible transition (smallest a) allows placing recording bits close together and hence results in high linear density. The position x_0 of perpendicular HAMR with large spot and linear relationship for H_c and M_s can be calculated as in [9],

$$x_0 = \frac{\sqrt{\frac{2}{\pi}} - a \tan^2 \left(\frac{\pi}{2}H_s(T(y)) \right)\sigma_t^2}{2 \pi \sigma_t^2}.$$ \hspace{1cm} (19)

and a can be also calculated from

$$a = \frac{\pi}{2} \frac{\sqrt{\frac{2}{\pi}} - a \tan^2 \left(\frac{\pi}{2}H_s(T(y)) \right)\sigma_t^2}{2 \pi \sigma_t^2} + \frac{2H_c(1-S^*)t}{H_0}.$$ \hspace{1cm} (20)

For non-large spot HAMR, x_0 can be solved by

$$x_{0, j+1} = \frac{2H_c(1-S^*)t}{H_0} \left[H_s(T(y)) + H_c(T(y), j+1) \right] \frac{\sqrt{\frac{2}{\pi}} - a \tan^2 \left(\frac{\pi}{2}H_s(T(y)) \right)\sigma_t^2}{2 \pi \sigma_t^2} + \frac{H_c(1-S^*)t}{H_0}.$$ \hspace{1cm} (21)

and a can be solved by

$$\alpha = -\beta + \sqrt{\beta^2 + 4\pi(\alpha + \delta)}.$$ \hspace{1cm} (22)

where

$$\alpha = \frac{\pi H_0}{\pi\left(x_{0,j+1}^2 + (g/2)^2 \right)} \frac{dH_s}{dx} - \frac{dH_c}{dx}.$$ \hspace{1cm} (21)

$$\beta = \frac{\pi a t}{2} + 2M_r \left(\frac{dH_d}{dx} + \frac{dH_c}{dx} \right) + 2H_c(1-S^*)$$
D. Microtrack Model

The microtrack model is used for 2D process of heating and magnetization of a medium to solve the problem of determining the transition characteristics in HAMR by dividing recorded track into \(N \) individual sub-tracks of equal width with different transition parameters. The TWC equation is applied to determine \(x_0 \) and \(a \) in each individual sub-track, as in [4]-[9]. The playback voltage \((V) \) of perpendicular recording is given from [12] by

\[
F(x_0, a, x_0') = -CM_T \ln \left(\frac{\left(g_c^2 \cdot (x-x_0') \right)^2 + \left(d + a + t/2 \right)^2}{\left(g_c^2 \cdot (x-x_0') \right)^2 + \left(d + a + t/2 \right)^2} \right)
\]

(23)

where \(C \) is a system specific constant, \(g_c \) is the read head gap, and \(d \) is the head-medium spacing and \(t \) is denote to media thickness.

The overall transition response \(p(x) \) can be obtained by weighting the transition response \(p_t(x) \) of each sub-track to

\[
p(x) = \frac{1}{N} \sum_{i=1}^{N} p_t(x)
\]

(24)

where \(a_i \) and \(x_{0i} \) are the transition parameter and transition center of the \(i^{th} \) microtrack, \(i \) can be 1 to \(N \) and \(\Delta x \) stands for the width of each sub-track. The bit response is then

\[
h(x) = 0.5 \left[p(x) - p(x-T_x) \right]
\]

(25)

where \(T_x \) denotes the along-track bit period.

III. TARGET AND EQUALIZER DESIGN

A. Channel Model

The laser can be positioned either in the direction of the head movement (up-track or +x) or opposite to it (down-track or -x). However, in this work, the laser is assumed to be at the center of the track in the cross-track direction. The HAMR channel with equalizer design is shown in Fig. 2.

![Fig. 2: The HAMR system with target-shaping equalization](image)

Fig. 2 The HAMR system with target-shaping equalization

where \(a_i \in \{\pm 1\} \) is input sequences and filtered by using ideal differentiator \((1-D)/2\). The sequence of the transitions is \(b_i \in \{\pm 1, 0\} \), where \(b_i \in \{\pm 1\} \) represents the positive and negative transitions, and \(b_i = 0 \) means no transition. The playback signal \(r(x) \) is obtained by convolution between \(b_i \) and transition response \(p_t \) and then corrupted by the additive white Gaussian noise (AWGN). In this simulation, SNR is defined as \(SNR = 10 \log_{10}(1/s^2) \), where \(s^2 \) is the variance of AWGN. The playback signal with AWGN \(y(x) \) will be passed to low pass filter (LPF), sampled and then put in equalizer (FD) to equalize the signal in order to facilitate the application of Viterbi detector (VD). Finally, the equalized outputs \(z(k) \) are detected by VD.

B. Target and Equalizer Design

In this study, we design targets (HD) and equalizers (FD) by using the minimum-mean squared error (MMSE) method to minimize the mean-squared error (MSE) between desired outputs and equalizer outputs, as in [11], [14]. The target \(H(D) \) and its corresponding \(F(D) \) can be obtained by minimizing

\[
E\{w_k^2\} = E\{(z_k - d_k)^2\} = E\left[\{(s_k * f_k) - (a_k * h_k)\}^2 \right]
\]

(27)

where \(w_k \) is the difference between output of equalizer, \(s_k \) and the desired output, \(d_k \) of designed target, * is the convolution operator and \(E\{\cdot\} \) is the expectation operator, \(h_k \) and \(f_k \) stand for the coefficients of \(H(D) \) and \(F(D) \). The MMSE can be expressed as

\[
e^2 = E\{w_k^2\} = F^T RF + H^T AH - 2F^T PH
\]

(28)

where \(H = [h_0, h_1, h_2, ..., h_{L+1}]^T \) represents the \(L \)-tap GPR target and \(F = [f_0, f_1, f_2, ..., f_L]^T \) represents the \(K \)-tap equalizer by where the length of the equalizer is \(N = (N = 2K+1) \). \(A \) is an \(L \times L \) autocorrelation matrix of \(a_k \), \(R \) is an \(M \times M \) autocorrelation matrix of sequence \(s_k \), and \(P \) is an \(M \times L \) cross-correlation matrix sequence of \(a_k \) and \(s_k \). During the minimization process, the specified constraint must be used to avoid the trivial solution of \(F = 0 \) and \(H = 0 \).

Firstly, by minimizing (28) subject to a monic constraint, we fix \(h_0 = 1 \) and compute

\[
e^2 = F^T RF + H^T AH - 2F^T PH - 2\lambda \left(1^T H - 1 \right)
\]

(29)

\[
\lambda = \frac{1}{1^T \left(A - P^T R^{-1} P \right)^{-1} \left(A - P^T R^{-1} P \right)^{-1} 1}
\]

\[
H = \lambda \left(A - P^T R^{-1} P \right)^{-1}
\]

\[
F = R^{-1} PH
\]

where \(\lambda \) is the Lagrange multiplier and \(I \) is an \(L \)-element column vector which 1st element is 1 and the rest is 0. Secondly, we fix the second target \(h_1 = 1 \) constraint. Column vector \(J \) that \(2nd \) element is 1 and the others are 0. This is identical to monic constraint solution but \(I \) is replaced by \(J \).

Thirdly, the energy \(H^T H = 1 \) is fixed to minimize (28) called the unit energy constraint.
\[e^2 = F^T (R F + H^T \text{AH} - 2F^T PH - 2A(H^TH - I)) \]
(30)

After differentiating and setting the result to 0, the final constraint we use fixed target constraint according to PR form \(1-D^2\) of the PR-4 target for minimizing (28).

IV. SIMULATION RESULTS

In this work, the medium is assumed to be \(\text{Fe}_{85-x}\text{Ni}_{x}\text{Pt}_{50}\text{L}_{10}\) where \(10<x<30\%\) because the linear relationship for remanent magnetization \(M_r\) and coercivity \(H_c\) with temperature is resulted in this range, as in [9], [10]. For all cases, the laser is assumed to be at the center of the track in the cross-track direction but varied in the down-track direction. The temperature induced by the laser is assumed to be Gaussian in both dimensions with the peak temperature of 330°C and track width 20nm. System parameters are given in Table I.

We first discuss the results from Fig. 3. Firstly, we fix \(M_r\) and \(a\) by using various \(H_c\). With magnetization dependencies on temperature \(M_r(=1000T+1.8x10^5)\), we found that at increasing \(H_c\), \(x_0\) is shifted far away from laser position and \(a\) is decreased. Secondly, we vary \(M_r\) to study \(x_0\) and \(a\) by using \(H_c = -2900T+2.4x10^6\) for evaluation. Fig. 4 shows that \(x_0\) has almost the same values and small \(a\) is found at low \(M_r\). Small \(a\) means narrow transitions, hence, recording bits are packed close together.

Next, we study \(x_0\) and \(a\) by focusing on the head field \((H_o)\). The results show that \(x_0\) is shifted far from the laser position and \(a\) is wider at high head field as shown in Fig. 5. Finally, using high \(H_c\), low \(M_r\), and low \(H_o\) to evaluate the system by varying peak temperature \((T_{\text{peak}})\), the results of this experiment show that high \(T_{\text{peak}}\) will give small \(a\) as shown in Fig. 6.

As the discussion before, we select high \(H_c\), low \(M_r\), low \(H_o\) and high \(T_{\text{peak}}\) to evaluate the system. The transition response \(p(x)\) and bit response \(h(x)\) can be achieved and shown in Fig. 7. We get \(PW_{50}\) equal to 13.988 nm and hence ND is about 2. The HAMR playback signal is obtained by the convolution between \(b_l\) and \(p_l\), and corrupted with AWGN. The playback with and without AWGN is shown in Fig. 8. Playback signal from LPF is also shown in this Fig. 8.

For MMSE equalizer design, we use the fixed target constraint to minimize the MSE by setting the various number of equalizer taps. Equalizer taps are in the range of 3 to 21 taps. PR1 gives the lowest MMSE from all the targets for this case. The results are shown in Fig. 9. The MMSE value at 11-tap equalizer is equal to 0.526. The 11-tap equalizer coefficients are [0.044 -0.036 0.252 0.128 1.320 2.641 1.356 0.404 0.166 0.033 -0.010].

Next, we compare the MSE using four target constraints for evaluation and the range is from 3 to 21 taps. We use 3-taps target to simulate this comparison. The result shows that the unit energy constraint has the lowest minimum MSE, as in Fig. 10. The 3-tap target with 11-tap equalizer has the MSE equal to 0.065. The \(h_1=0\) constraint gives the MSE of 0.105. For \(h_0 = 1\) constraint, the minimum MSE of this targets is 0.091, and the fixed-target constraint using PR2 [1 2 1] has the highest MSE value equal to 1.890.

Since the unit-energy constraint gives the lowest MSE value, we select the unit energy constraint to evaluate and find the MSE with the various number of target taps. Equalizer taps are also in the range of 3 to 21 taps as the previous simulation. For the 11-tap equalizer, the 10-tap target gives the minimum MSE as shown in Fig. 11. The 11-tap equalizer coefficients are [-0.043 0.050 -0.126 0.186 -0.466 0.228 0.616 -0.956 0.360 0.413 -0.438] and 10-tap target coefficients are [-0.261 0.475 -0.109 -0.491 0.607 -0.142 -0.212 0.132 -0.039 0.021]. The MMSE value is 0.055.

V. CONCLUSIONS

In this paper, we use the thermal William-Comstock equation to model the perpendicular heat assisted magnetic recording with non-large thermal laser spot. The playback signal of HAMR can be affected from various parameters such as \(H_c\), \(M_r\), \(H_o\) and \(T_{\text{peak}}\). The simulation results show that the proper high \(H_c\), low \(M_r\), low \(H_o\) and high \(T_{\text{peak}}\) provide the good transition parameters. Moreover, we design the MMSE equalizer for heat-assisted magnetic recording. The lowest minimum MSE value is obtained from the unit energy constraint.

TABLE I

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW</td>
<td>track width</td>
<td>20 nm</td>
</tr>
<tr>
<td>N</td>
<td>number of sub-track</td>
<td>10</td>
</tr>
<tr>
<td>c_r</td>
<td>laser position</td>
<td>0 nm</td>
</tr>
<tr>
<td>H_o</td>
<td>deep gap field</td>
<td>1x10^6 A/m</td>
</tr>
<tr>
<td>T_{peak}</td>
<td>peak temperature</td>
<td>330°C</td>
</tr>
<tr>
<td>σ</td>
<td>sigma of temperature profile</td>
<td>16.2 nm</td>
</tr>
<tr>
<td>g</td>
<td>gap width between pole head and its image</td>
<td>32 nm</td>
</tr>
<tr>
<td>σ_r</td>
<td>sigma of reader sensitivity function</td>
<td>4.23 nm</td>
</tr>
<tr>
<td>d</td>
<td>head-medium distance or fly height</td>
<td>6 nm</td>
</tr>
<tr>
<td>t</td>
<td>medium thickness</td>
<td>10 nm</td>
</tr>
<tr>
<td>T_b</td>
<td>bit period</td>
<td>6 nm</td>
</tr>
<tr>
<td>C</td>
<td>a system specific constant</td>
<td>1</td>
</tr>
<tr>
<td>H_c</td>
<td>dependence of coercivity on temperature</td>
<td>2900T=2.4x</td>
</tr>
<tr>
<td>M_r</td>
<td>dependence of remanent magnetization on temperature</td>
<td>10^6 A/m</td>
</tr>
<tr>
<td>AD</td>
<td>Axial density</td>
<td>5 Tb/m^2</td>
</tr>
</tbody>
</table>

![Fig. 3 Transition center and parameter with various H dependencies on temperature](image-url)
Fig. 4 Transition center and parameter with various M_t dependencies on temperature

Fig. 5 Transition center and parameter with various head field

Fig. 6 Transition center and parameter with various peak temperatures

Fig. 7 Transition center, parameter, response and bit response

ACKNOWLEDGMENT

This work was support in part by Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang. Also, we would like to acknowledge Western Digital (Thailand) Co., Ltd. for granting the scholarship at the International College, King Mongkut’s Institute of Technology Ladkrabang.

REFERENCES

