Exponential Passivity Criteria for BAM Neural Networks with Time-Varying Delays

Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract—In this paper, the exponential passivity criteria for BAM neural networks with time-varying delays is studied. By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments, a novel sufficient condition is established to guarantee the exponential stability of the considered system. Finally, a numerical example is provided to illustrate the usefulness of the proposed main results.

Keywords—BAM neural networks, Exponential passivity, LMI approach, Time-varying delays.

I. INTRODUCTION

BIDIRECTIONAL associative memory (BAM) neural networks have been extensively studied in recent years due to its wide application in various areas such as image processing, automatic control, pattern recognition, and so on. Therefore, it is meaningful and important to study the BAM neural network. They were originally introduced by Kosko [1-3], have attracted by many researchers. The problems of robust passivity, delay-dependent and stability have been well investigated; see, for example [7, 8, 10-24] and references cited therein. Moreover, the problems of dissipativity of neural networks were proposed in [4, 9].

Recently, the exponential passivity of neural networks with time-varying delays has been studied. A typical example of it is [5], where sufficient conditions have been obtained for considered neural networks to be exponential passivity. But in [5, 6], the information of neuron activation functions and the involved time-varying delays has not been adequately considered, which may lead to some conservatism. In [7], the derivative of a time-varying delay be less than 1, but it is not necessary to consider the derivative of a time-varying delay less than 1.

As far as the problems of exponential passivity of BAM neural networks with time-varying delays has not been widely studied, which motivates this work. In the present paper, we investigate the problem of delay-dependent exponential passivity for BAM neural networks with time-varying delays. The delay belongs to a given interval, and the restriction that the derivative of a time-varying delay be less than 1 is removed. A novel sufficient condition is established by dividing the delay interval into multiple segments, and constructing new Lyapunov-Krasovskii functional which contains some new integral terms. Finally, in order to show the feasibility of the proposed criteria in this paper, a numerical example is considered.

II. PROBLEM STATEMENT

Consider the following BAM neural networks with time-varying delays described by

$$
\begin{align*}
\dot{x}(t) &= -Ax(t) + CF(y(t)) + EF(y(t-h(t))) + \mu(t) \\
z_1(t) &= f(y(t)) + f(y(t-h(t))) + \mu(t) \\
y(t) &= -By(t) + Df(x(t)) + Gf(x(t-\zeta(t))) + \nu(t) \\
z_2(t) &= g(x(t)) + g(x(t-\zeta(t))) + \nu(t)
\end{align*}
$$

(1)

where $x(t) = [x_1(t), x_2(t), \ldots, x_n(t)]^T \in \mathbb{R}^n$ and $y(t) = [y_1(t), y_2(t), \ldots, y_n(t)]^T \in \mathbb{R}^n$ denote the neuron state vectors; $g(x(t)) = [g_1(x_1(t)), g_2(x_2(t)), \ldots, g_n(x_n(t)))]^T \in \mathbb{R}^n$ and $f(y(t)) = [f_1(y_1(t)), f_2(y_2(t)), \ldots, f_n(y_n(t))]^T \in \mathbb{R}^n$ are the neuron activation function; $A = diag\{a_i\} \in \mathbb{R}^{n \times n}$ and $B = diag\{b_i\} \in \mathbb{R}^{n \times m}$ are positive diagonal matrices; C and D are the connection weight matrices; E and F are the delayed connection weight matrices; $\mu(t)$ and $\nu(t)$ are the external input vector to neurons; $z_1(t)$ and $z_2(t)$ are the output vector of neuron networks.

The following assumptions are adopted throughout the paper.

Assumption 1: The delay $h(t)$ and $\zeta(t)$ are time-varying continuous functions and satisfies:

$$
0 \leq \zeta(t) \leq \varsigma, \ zeta(t) \leq \varsigma_D, 0 \leq h(t) \leq \varsigma, \ h(t) \leq \varsigma_D
$$

(2)

where ς, ς_D and ς_D are constants.

Assumption 2: Neuron activation function $g_i(\cdot), f_i(\cdot)$ in (1) satisfies the following condition:

$$
\begin{align*}
\sigma_i^- &\leq \frac{g_i(\alpha) - g_i(\beta)}{\alpha - \beta} \leq \sigma_i^+ \\
\delta_i^- &\leq \frac{f_i(\alpha) - f_i(\beta)}{\alpha - \beta} \leq \delta_i^+
\end{align*}
$$

(3)

$g_i(0) = 0, f_i(0) = 0, \alpha, \beta \in \mathbb{R}, \alpha \neq \beta, i = 1, 2, \ldots, n.$

where

$$
\Sigma^+ = diag\{\delta_1^+, \delta_2^+, \ldots, \delta_n^+\}, \Sigma^- = diag\{\delta_1^-, \delta_2^-, \ldots, \delta_n^-\},
\Gamma^+ = diag\{\sigma_1^+, \sigma_2^+, \ldots, \sigma_n^+\}, \Gamma^- = diag\{\sigma_1^-, \sigma_2^-, \ldots, \sigma_n^-\}
$$

Thus, under this assumption, the following inequalities hold for
any diagonal matrices $R_1, R_2 > 0$
\[y^T(t)\Sigma_1 y(t) - f^T(y(t)) R_1 f(y(t)) \geq 0 \]
\[x^T(t)\Gamma_1 x(t) - g^T(y(t)) \leq 0 \]
where
\[\Sigma_1 = \text{diag} \{ \delta_1, \delta_2, \ldots, \delta_n \}, \delta_i = \max_{1 \leq i \leq n} |\delta_{ii}|. \]
\[\Gamma_1 = \text{diag} \{ \sigma_1, \sigma_2, \ldots, \sigma_n \}, \sigma_i = \max_{1 \leq i \leq n} |\sigma_{ii}|. \]

Theorem 1 Given that the Assumption 1-2 hold, the system (1) is exponentially passive if there exist symmetric positive definite matrices $P_i, Q_i, i = 1, 2, \ldots, 6, G, M, \text{positive diagonal matrices } W_{ij}, i = 1, 2, 3, 4, R_1, R_2, K_i = \text{diag} \{k_1, k_2, \ldots, k_n \}, L_i = \text{diag} \{l_1, l_2, \ldots, l_n \}$, and a constant $\rho > 0$, such that the following LMIs hold:

\[
\begin{align*}
E_1 & \leq P_1^T P_0, \\
\rho L & > 0
\end{align*}
\]
\[E_{17} = r(z_{(D)}(G_{12} - G_{13} - \Gamma - G_{22} + \Gamma - G_{33} + \Gamma + G_{13}^2 - \Gamma + G_{33})) + \Gamma_1 W_4 \]

\[E_{66} = -R_2 + G_{22} - 2G_{23} + G_{33} - W_3 \]

\[E_{68} = L_1 - L_2, E_{69} = D^T P_2 - D^T K_1 \Sigma + D^T K_2 \Sigma^+ \]

\[E_{14,14} = -R_1 + M_{22} - 2M_{23} + M_{33} - W_1 \]

\[E_{15,15} = r(h_{(D)})(-R_1 + M_{22} - 2M_{23} + M_{33}) - W_2 \]

\[E_{14,16} = K_1 - K_2, E_{16,16} = -2I \]

All other terms are 0.

Proof: Construct a new class of Lyapunov functional candidate as follow:

\[V(x_t, y_t) = \sum_{i=1}^{6} V_i(x_t, y_t) \]

with

\[V_1(x_t, y_t) = x^T(t)P_1x(t) + y^T(t)P_2y(t) \]

\[V_2(x_t, y_t) = 2\int_{t}^{\infty} \left[k_{11}(f_1(s) - \delta^+_s + k_{12}(\delta^+_s - f_1(s))) \right] ds + 2\int_{t}^{\infty} \left[k_{13}(g_1(s) - \sigma^+_s + k_{14}(\sigma^+_s - g_1(s))) \right] ds \]

\[V_3(x_t, y_t) = \int_{t-h(t)}^{t} \varphi_{(y)}(s)R_2\Gamma_{x}(s) - y^T(x(s))R_2g(x(s)) ds \]

\[V_4(x_t, y_t) = \int_{t-c(t)}^{t} \varphi(x(s)) - \Gamma_{x}(s) - g(x(s)) ds \]

\[V_5(x_t, y_t) = \int_{t-h(t)}^{t} \varphi_{(y)}(s)Q_4y(s) ds + \int_{t-h(t)}^{t} \varphi_{(y)}(s)Q_5y(s) ds \]

\[V_6(x_t, y_t) = \int_{t-c(t)}^{t} \varphi_{(x)}(s)Q_4x(s) ds + \int_{t-c(t)}^{t} \varphi_{(x)}(s)Q_5x(s) ds \]

where

\[\varphi = e^{-\rho(t-s)} \]

\[M = \begin{bmatrix} M_{11} & * & * \\ M_{12} & M_{22} & * \\ * & M_{33} & * \end{bmatrix}, G = \begin{bmatrix} G_{11} & G_{12} & G_{13} \\ * & G_{22} & G_{23} \\ * & * & G_{33} \end{bmatrix} \]

Then, taking the derivative of \(V(x_t, y_t) \) with respect to \(t \) along the system (1) yields

\[\dot{V}_1(x_t, y_t) = 2x^T(t)P_1x(t) + 2y^T(t)P_2y(t) \]

\[\dot{V}_2(x_t, y_t) = 2(f^T(t) - y^T(t)\Sigma_{-}K_{1}y(t)) + 2(g^T(t)\Sigma_{-}K_{2}y(t)) \]

\[\dot{V}_3(x_t, y_t) = 2(x^T(t)\Gamma_{x}(s) - y^T(t)\Gamma_{y}(s)) \]

\[\dot{V}_4(x_t, y_t) = 2(x^T(t)\Gamma_{x}(s) - y^T(t)\Gamma_{y}(s)) \]

\[\dot{V}_5(x_t, y_t) = 2(x^T(t)\Gamma_{x}(s) - y^T(t)\Gamma_{y}(s)) \]

\[\dot{V}_6(x_t, y_t) = 2(x^T(t)\Gamma_{x}(s) - y^T(t)\Gamma_{y}(s)) \]
\[V_4(x, t, y) \leq -pV_5 + x^T(t)(Q_1 + Q_2 + Q_3)x(t) - e^{-\frac{\alpha}{2}}t^2 \leq \frac{2\varepsilon}{3}Q_2x(t) - \frac{2\varepsilon}{3} + e^{-\alpha}x^T(t) - \frac{3}{3}Q_3x(t - \frac{3}{3}y^T(t)(Q_4 + Q_s + Q_6)y(t) - e^{-\frac{\delta}{2}}y^T(t) - \frac{h}{3}(Q_4y(t) - \frac{3}{3}) - e^{-\alpha}y^T(t) - \frac{2h}{3}Q_3y(t - \frac{3}{3}) - e^{-\frac{\mu}{2}}y^T(t) - \frac{h}{3}(Q_4y(t) - \frac{3}{3}) \]

Now, we consider the following four zero equalities with any symmetric matrix \(T_1, T_2, T_3, T_4 \)

\[y^T(t)T_1y(t) - y^T(t)T_1y(t) - 2 \int_{t-h(t)}^{t} y^T(s)T_1y(s)ds = 0 \]

\[y^T(t)T_2y(t) - y^T(t-h)T_2y(t-h) - 2 \int_{t-h}^{t-h(t)} y^T(s)T_2y(s)ds = 0 \]

\[x^T(t)T_3x(t) - x^T(t)T_3x(t) - 2 \int_{t-c(t)}^{t} x^T(s)T_3x(s)ds = 0 \]

\[x^T(t)T_4x(t) - x^T(t-c(t))T_4x(t-c(t)) - 2 \int_{t-c}^{t-c(t)} x^T(s)T_4x(s)ds = 0 \]

Here, using Lemma 1, we have

\[\sum_{i=1}^{n} \int_{0}^{\rho_i(t)} [k_{i}(f_i(s) - \delta_i^s + k_{i,2}(\delta_i^s - f_i(s))]ds \leq (f(y(t)) - \Sigma y(t))T_{1}y(t) + (\Sigma y(t) - f(y(t)))T_{2}y(t) \]

For (3), we can get that there exist positive diagonal matrices \(W_1, W_2, W_3, W_4 \) such that the following inequalities holds:

\[\begin{bmatrix} y(t) \\ f(y(t)) \end{bmatrix} \geq 0 \]

From (12)-(27), we can get

\[\dot{V}(x, y) + pV_0 + \rho V_5 + x^T(t)(Q_1 + Q_2 + Q_3)x(t) - e^{-\frac{\alpha}{2}}t^2 \leq \frac{2\varepsilon}{3}Q_2x(t) - \frac{2\varepsilon}{3} + e^{-\alpha}x^T(t) - \frac{3}{3}Q_3x(t - \frac{3}{3}y^T(t)(Q_4 + Q_s + Q_6)y(t) - e^{-\frac{\delta}{2}}y^T(t) - \frac{h}{3}(Q_4y(t) - \frac{3}{3}) - e^{-\alpha}y^T(t) - \frac{2h}{3}Q_3y(t - \frac{3}{3}) - e^{-\frac{\mu}{2}}y^T(t) - \frac{h}{3}(Q_4y(t) - \frac{3}{3}) \]

Using Lemma 2 and (7)-(11), we can get

\[\dot{V}(x, y) + pV_0 + \rho V_5 + x^T(t)(Q_1 + Q_2 + Q_3)x(t) - e^{-\frac{\alpha}{2}}t^2 \leq \frac{2\varepsilon}{3}Q_2x(t) - \frac{2\varepsilon}{3} + e^{-\alpha}x^T(t) - \frac{3}{3}Q_3x(t - \frac{3}{3}y^T(t)(Q_4 + Q_s + Q_6)y(t) - e^{-\frac{\delta}{2}}y^T(t) - \frac{h}{3}(Q_4y(t) - \frac{3}{3}) - e^{-\alpha}y^T(t) - \frac{2h}{3}Q_3y(t - \frac{3}{3}) - e^{-\frac{\mu}{2}}y^T(t) - \frac{h}{3}(Q_4y(t) - \frac{3}{3}) \]

Based on Definition 1, the system (1) is guaranteed to be exponential passivity, which complete the proof.

Remark 1 Firstly, in this paper, the restriction that the derivative of a time-varying delay be less than 1 is removed. Secondly, dividing the delay interval [0, h] and [0, c] into three different ones \([0, \frac{h}{2}], [\frac{h}{2}, \frac{h}{2} + \frac{h}{2}], h\) and \([0, \frac{c}{2}], [\frac{c}{2}, \frac{c}{2} + \frac{c}{2}], c\), respectively, and constructing new Lyapunov functional which contains some new integral terms. It has potential to yield less conservative results.

Remark 2 Theorem 1 reduces to the LMIs exponential stability condition for delayed BAM neural networks if the \(\mu(t) = 0 \) and \(\nu(t) = 0 \).
Next, we consider the special case of the system (1) with \(\mu(t) = 0, \nu(t) = 0 \).

Corollary 1 Given that the Assumption 1-2 hold, the system (1) is exponentially passive if there exist symmetric positive definite matrices \(P_i, Q_i, i = 1, 2, \ldots, 6, G, M \), positive diagonal matrices \(W_{ij}, j = 1, 2, 3, 4, R_1, R_2, K_i = diag(k_1, k_2, \ldots, k_m) \), \(L_i = diag(l_1, l_2, \ldots, l_n) \), \(i = 1, 2 \), any symmetric matrix \(T_i, i = 1, 2, 3, 4 \) and a constant \(\rho > 0 \) such that the following LMIs hold:

\[
\begin{bmatrix}
F^1 & \kappa^T \tilde{P}_6 & 3\tilde{P}_4 \\
* & -\tilde{P}_6 & 0 \\
* & * & -\tilde{P}_3
\end{bmatrix} < 0
\] (28)

\[
F^1_{P_3} = \begin{bmatrix} F^1 & T_1 & 0 \\ T_2 & F^1 & 0 \\ T_3 & 0 & F^1 \end{bmatrix} > 0
\]

\[
F^1_{P_5} = \begin{bmatrix} F^1 & T_4 & 0 \\ T_4 & F^1 & 0 \end{bmatrix} > 0
\]

\[
F^1_{P_6} = \begin{bmatrix} F^1 & T_4 & 0 \\ T_4 & F^1 & 0 \end{bmatrix} > 0
\]

where

\[
\mu_1 = [-A, 0_{n \times 11n}, C, E], \quad \gamma_1 = [0_{n \times 5n}, D, F, -B, 0_{n \times 6n}]
\]

\[
F^1 = [F^1_{ij}] \quad (i, j = 1, 2, \ldots, 14)
\]

\[
F^1_{11} = \rho P_1 - P_1 A - AP_1 + 2\Gamma_1 L_1 A - 2\Gamma_1 L_2 A + \Gamma_1 R_1 \Gamma_1 + G_{11} - 2G_{12} \Gamma_1 + 2G_{13} \Gamma_1^+ + \Gamma_1 G_{22} \Gamma_1 - 2\Gamma_1 G_{23} \Gamma_1 + \Gamma_1^+ G_{33} \Gamma_1^+ + Q_1 + Q_3 + \kappa_2 \rho \Gamma_1 T_3 - 2\rho \Gamma_1 L_1 + 2\rho \Gamma_1 L_2 - \Gamma_1 W_3
\]

\[
F^1_{16} = -L_1 A + L_2 A + G_{12} - G_{13} - \Gamma_1 G_{22} + \Gamma_1 G_{23}
\] + \(\Gamma_1^+ G_{23} + \Gamma_1^+ G_{33} + \rho L_1 - \rho L_2 + \Gamma_1 W_3 \)

\[
F^1_{1,13} = P_1 C - \Gamma_1 L_1 C + \Gamma_1 L_2 C
\]

\[
F^1_{1,14} = P_1 E - \Gamma_1 L_1 E + \Gamma_1 L_2 E + \Gamma_1 L_2 E
\]

\[
F^1_{2,2} = -e^{-\kappa_1} Q_4, F^1_{3,3} = -e^{-\kappa_2} Q_2
\]

\[
F^1_{4} = -e^{-\kappa_3} (Q_3 - T_4)
\]

\[
F^1_{3,5} = r(s_D)(\Gamma R_2 \Gamma + G_{11} - 2G_{12} \Gamma_1 - 2G_{13} \Gamma_1^+ + \Gamma_1 - G_{22} \Gamma_1 - 2\Gamma_1 - G_{23} \Gamma_1^+ + \Gamma_1^+ G_{33} \Gamma_1^+) - \Gamma_1 W_4 + e^{-\kappa_3} (T_3 - T_4)
\]

\[
F^1_{3,7} = r(s_D)(G_{12} - G_{13} - \Gamma_1 G_{22} + \Gamma_1 G_{23} + \Gamma_1^+ G_{23} - \Gamma_1^+ G_{33})
\] + \(\Gamma_1 W_4 \)

\[
F^1_{66} = -R_2 + G_{22} - 2G_{23} + G_{33} - W_3
\]

\[
F^1_{6,13} = L_1 C - L_2 C + D^T K_1 - D^T K_2, F^1_{6,14} = L_1 E - L_2 E
\]

\[
F^1_{7,1} = r(s_D)(-R_2 + G_{22} - 2G_{23} + G_{33}) - W_4
\]

\[
F^1_{7,8} = F^T P_2 - F^T K_1 \Sigma_+ - F^T K_2 \Sigma^+
\]

\[
F^1_{7,13} = F^T K_1 - F^T K_2
\]

\[
F^1_{8,11} = -B^T K_1 + B K_2 - M_{12} - M_{13} - M_{22} + M_{23}
\]

\[
F^1_{8,14} = -B^T K_1 + B K_2 + M_{12} - M_{13} - M_{22} + M_{23}
\]

\[
F^1_{9,9} = -e^{-\kappa_4} Q_4
\]

\[
F^1_{10,10} = -e^{-\kappa_5} Q_5, F^1_{11,11} = -e^{-\kappa_6} (Q_6 - T_2)
\]

\[
F^1_{12,12} = \bar{r}(h_D)(\Sigma R_1 \Sigma + M_{11} - 2M_{12} \Sigma_+ + 2M_{13} \Sigma^+) - \Sigma_2 W_2 + e^{-\kappa_7} (T_1 - T_2)
\]

\[
F^1_{12,14} = \bar{r}(h_D)(M_{12} - M_{13} - M_{22} + M_{23} + M_{23}^T + \Sigma^+ M_{33})
\] + \(\Sigma_1 W_2 \)

\[
F^1_{13,13} = -R_1 + M_{22} - 2M_{23} + M_{33} - W_1
\]

\[
F^1_{14,14} = \bar{r}(h_D)(-R_1 + M_{22} - 2M_{23} + M_{33}) - W_2
\]

All other terms are 0.

Proof: The proof of the Corollary 1 is consequence of Theorem 1 by choosing \(\mu(t) = 0, \nu(t) = 0 \). Hence the proof is omitted.

Remark 3 In this paper, Theorem 1 and Corollary 1 require the upper bound \(h_D, s_D \) to be known. However, in many cases \(h_D, s_D \) is unknown, considering this situation, we can set \(R_i = 0, (i = 1, 2) \), \(M = G = 0 \) in \(V(x_t, y_t) \), and employ the same methods in Theorem 1 and Corollary 1, we can derive the delay-dependent and delay-derivative-independent exponential passivity criteria.
In this section, we provide an example to demonstrate the effectiveness and feasibility of our results.

Example 1 Consider the BAM neural networks with the following parameters:

\[A = \begin{bmatrix} 1.8 & 0 \\ 0 & 2.2 \end{bmatrix}, \quad B = \begin{bmatrix} 2.5 & 0 \\ 0 & 2.2 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}, \]

\[D = \begin{bmatrix} 0.1 & 0 \\ 0 & -0.1 \end{bmatrix}, \quad E = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.5 \end{bmatrix}, \quad F = \begin{bmatrix} 0.3 & 0.1 \\ -0.3 & 0.4 \end{bmatrix}, \]

\[\Sigma^+ = \text{diag}(0.1,0.1), \quad \Sigma^- = \text{diag}(-0.1,-0.1), \]

\[\Gamma^+ = \text{diag}(1,1), \quad \Gamma^- = \text{diag}(-1,-1), \]

and \(f_1(s) = \tanh(-0.7s), f_2(s) = \tanh(0.2s), \)

\[g_1(s) = \tanh(-0.2s), g_2(s) = \tanh(-0.8s) \]

\(h(t) = 0.8 | \cos t |, \quad \zeta(t) = 0.8 | \sin t | \).

In Table I, we consider the case of \(h = \zeta = n_1, h_D = \zeta_D = n_2, \) the upper bound of \(\rho \) is derived by Theorem 1 and Corollary 1. According to Table II, we can know the maximum values of \(\rho \) for various \(h, \zeta \) and unknown \(h_D, \zeta_D. \) By using the Matlab LMI toolbox, we solve LMI (7)-(11), for the case of \(h = \zeta = 0.6, \zeta_D = h_D = 0.7, \rho = 1.028,\) and obtain

\[P_1 = \begin{bmatrix} 2.9045 & -0.0637 \\ -0.0637 & 3.1610 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0.7688 & 0.1800 \\ 0.1800 & 0.4953 \end{bmatrix}, \]

\[P_3 = \begin{bmatrix} 0.4171 & 0.2033 \\ 0.2033 & 0.1061 \end{bmatrix}, \quad P_4 = \begin{bmatrix} 0.2005 & 0.1067 \\ 0.1067 & 0.0829 \end{bmatrix}, \]

\[P_5 = \begin{bmatrix} 0.4354 & -0.1857 \\ -0.1857 & 2.8541 \end{bmatrix}, \quad P_6 = \begin{bmatrix} 1.5861 & 0.1032 \\ 0.1032 & 0.2407 \end{bmatrix}, \]

\[Q_1 = \begin{bmatrix} 0.0011 & -0.0130 \\ -0.0130 & 0.1691 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 0.0113 & -0.0011 \\ -0.0011 & 0.1691 \end{bmatrix}, \]

\[Q_3 = \begin{bmatrix} 0.8193 & -0.0038 \\ -0.0038 & 0.8689 \end{bmatrix}, \quad Q_4 = \begin{bmatrix} 0.1185 & 0.0571 \\ 0.0571 & 0.0279 \end{bmatrix}, \]

\[Q_5 = \begin{bmatrix} 0.1183 & 0.0274 \\ 0.0274 & 0.0450 \end{bmatrix}, \quad Q_6 = \begin{bmatrix} 0.0808 & 0.0389 \\ 0.0389 & 0.0190 \end{bmatrix}, \]

\[K_1 = \begin{bmatrix} 0.0027 & 0 \\ 0 & 0.0027 \end{bmatrix}, \quad K_2 = \begin{bmatrix} 0.0026 & 0 \\ 0 & 0.0026 \end{bmatrix}, \]

\[R_1 = \begin{bmatrix} 0.3472 & 0 \\ 0 & 0.3472 \end{bmatrix}, \quad R_2 = \begin{bmatrix} 0.7006 & 0 \\ 0 & 0.7006 \end{bmatrix}, \]

\[L_1 = 1.0 \times 10^{-3} \times \begin{bmatrix} 0.1101 & 0 \\ 0 & 0.1101 \end{bmatrix}, \]

\[L_2 = 1.0 \times 10^{-3} \times \begin{bmatrix} 0.1094 & 0 \\ 0 & 0.1094 \end{bmatrix}, \]

\[M = \begin{bmatrix} 0.0011 & -0.0130 \\ -0.0130 & 0.1691 \end{bmatrix}, \quad M = \begin{bmatrix} 0.0011 & -0.0130 \\ -0.0130 & 0.1691 \end{bmatrix}, \]

\[G = \begin{bmatrix} 0.4354 & -0.1857 \\ -0.1857 & 2.8541 \end{bmatrix}, \quad G = \begin{bmatrix} 0.4354 & -0.1857 \\ -0.1857 & 2.8541 \end{bmatrix}. \]

The state trajectories of variables \(x(t) \) and \(y(t) \) with the initial condition \(x^T(t) = [1, -1]^T \) and \(y^T(t) = [2, -2]^T \) are shown in Fig.1.

Fig.1. The state response of system (1) in Example 1.

V. CONCLUSION

In this paper, the issues of delay-dependent exponential passivity analysis is investigated for BAM neural networks with time-varying delays. The obtained criteria are less conservative because a bounding technique of integral terms with free-weighting matrices in different delay intervals is utilized. Finally, for this problem, one example is provided to show the feasibility of the proposed criteria in this paper.

ACKNOWLEDGMENT

The authors would like to thank the editors and the referees for their valuable suggestions and comments which have helped to greatly improve the paper. This work was supported by the National Basic Research Program of China (2010CB732501).

REFERENCES

Qiongqing Wang was born in Anhui Province, China, in 1989. She received the B.S. degree from Anqing University in 2011. He is currently as a full professor with School of Applied Mathematics, UESTC. His current research interests include robust control, neural networks, biomathematics and delay systems. He has authored more than 80 papers in reputed journals such as the International Journal of Systems Science, Applied Mathematics and Computation, Chaos, Solitons and Fractals, Dynamics of Continuous, Discrete and Impulsive Systems, Acta Automatica Sinica, Journal of Control Theory and Applications, Acta Electrónica Sinica, Control and Decision, and Journal of Engineering Mathematics.

Baoceng Chen was born in Anhui Province, China, in 1990. He received the B.S. degree from Anqing University in 2011. He is currently pursuing the M.S. degree from University of Electronic Science and Technology of China. His research interests include dynamics systems and signal processing.