

Abstract - Negation is useful in the majority of the real world

applications. However, its introduction leads to semantic and
canonical problems. We propose in this paper an approach based on
stratification to deal with negation problems. This approach is based
on an extension of predicates nets. It is characterized with two main
contributions. The first concerns the management of the whole class
of stratified programs. The second contribution is related to usual
operations optimizations on stratified programs (maximal
stratification, incremental updates …).

Keywords - stratified programs, stratification, standard model,
update operations, SEPN formalism.

I. INTRODUCTION
OGICAL programming constitutes a powerful tool for the
treatment of several problems in particular in artificial

intelligence [1] and deductive databases [2].
Many real world applications need the use of negation for

modeling negative information. Negation introduction leads to
several problems, in particular the definition of a canonical
semantics for these programs [3], [4]. Several works showed
that under certain syntactic restrictions, it is possible to define
a canonical semantics of normal programs. This leads to
stratified programs [3], [4]. The approach based on
stratification received attention on behalf of the researchers.
Unfortunately, implementation aspects, in particular,
representation structures and manipulation algorithms, were
completely neglected.

We propose in this paper an original extension of predicates
nets (EPN), noted SEPN, as representation structure of
stratified programs. In addition to their formal aspect, EPN
nets proved their efficiency in modeling knowledge bases, in
particular in artificial intelligence [1], deductive databases [2]
and expert systems [5]. However, EPN algorithms require non
acceptable execution time in case of large programs.

We establish a correspondence between the SEPN and
stratified programs. This correspondence was used for
building an efficient implementation of this type of programs
and countering EPN problems.

Manuscript received March 31, 2005.
A. G.T. is with the Department of Telecommunication and Information

Technologies of National School of Engineers of Tunis, Tunisia (e-mail:
amel.touzi@enit.rnu.tn).

C. J. is with the Department of Electrical Engineering of National School
of Engineers of Tunis, Tunisia (e-mail: jerad.chadlia @ gawab.com).

H. O. is with the Department of Computer Science of Faculty of Sciences
of Tunis, Tunisia (e-mail: habib.ounelli@fst.rnu.tn)

Our approach has two main parts: (1) SEPN and (2)
manipulation algorithms of stratified programs. Due to space
limitation, we devote this paper to the first part. The second
part is the subject of paper [6].

The remainder of the paper is organized in six sections.
Section 2 presents basic concepts of stratified programs.
Section 3 describes our approach based on SEPN. The
correspondence between stratified programs and SEPN is
presented in section 4. Section 5 presents the advantages of
SEPN use and an example. Section 6 concludes the paper and
gives some extensions of our work.

II.� BASIC CONCEPTS
We suppose known basic concepts of logical programming

[7]. We recall briefly, in this section, basic notions related to
stratified programs.

A. Stratified Programs
Negation introduction leads to many problems, in particular

the definition of a canonical semantics for these programs [3],
[4]. Several works showed that stratification is a possible
solution to the treatment of negation problems [3], [4]. Indeed,
under certain syntactic conditions, the problem of the choice
of a model can be solved by dividing the program into
elements called stratum. This decomposition is made in order
to allow the use of negative literals only if all their logical
consequences are already deduced in the model. Thus, we are
able to apply closed world assumption. We present in what
follows basic definitions related to stratified programs [4], [8].

Let P be a logical program. A predicate symbol q definition
is the set of all the clauses of the program P having q at the
head of the clause. A program P is stratifiable if there is a
partition P = P1 ∪ … ∪ Pn (where P1 can be empty), called
stratification of P such as for each i = 1, 2,…, n, we have the
following properties:

- if a predicate symbol is positive in Pi then its definition is
contained in ∪ j ≤ i Pj.

- if a predicate symbol is negative in Pi then its definition is
in ∪ j < i Pj.

- Each Pi is called a strata.
The dependency graph of a program P (Dp) is composed of

a set of nodes connected by arcs. Each node represents a
predicate of P. The arc matching r and q, noted (r, q), belongs
to Dp if there is a clause in P using r in its head and q in its
body. We say r refers to q. If a predicate q appears positively
(respectively negatively) in the body then (r, q) is called

New Approach for Manipulation of Stratified
Programs

Amel Grissa-Touzi, Chadlia Jerad, and Habib Ounelli

L

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3574International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

94
9.

pd
f

positive (respectively negative).
A program is stratifiable if and only if, its dependency

graph does not contain any circuit containing a negative arc
[4], [8].

A stratifiable program can have several stratifications [8].
This property is used in the remaining of the article without
demonstrating it here.

A stratification P = P1 ∪ … ∪ Pn is maximal stratification
if each strata cannot be decomposed into different stratum. Let
Pi be a stratum and M a set of facts, we denote by SAT(Pi, M)
the saturation of M by Pi, which is the set of facts obtained by
the closing of M under the clauses of Pi.

Let P = P1 ∪ … ∪ Pn be a maximal stratification of P, we
define the standard model of the program P (MP), by
proceeding in recursive way the following operation [8]:

M1 = SAT (P1, ∅)
…
MP = M n = SAT (P n, M n-1)

The Mp model has three properties, which are (1) Mp does
not depend on the stratification of P, (2) Mp is a standard
model of P and (3) Mp is a model of completion of P.

In general, SAT function depends on the order of program
clauses. However, this is not the case for a stratum of P.
Indeed, we apply the closed world assumption directly
because the definition of negative literals is on a strictly lower
level. Thus, there is not possibility of deducing new facts
relating to this literal.

B. Update of a stratified program
This subsection is dedicated to the study of update

operations on stratified programs.
An update operation is the removal or the addition of a fact

or a rule of a program [8]. An update operation is accepted if
the following conditions are verified: (1) any constant, which
does not belong to the language describing the program, can
not be introduced, (2) the inserted clause must be "Range-
Restricted", this means that the variables appearing in the head
of the clause appear in its body and (3) the obtained program
remains stratified.

An update operation transforms a program P into a program
P'. Consequently, the MP model associated to P is transformed
into a model Mp’ associated to P'. The new updated model
Mp' can be completely different from Mp. In fact, Mp’ may
contain facts not belonging to Mp, without being an over set.
In general, the new Mp' model computation consists on the
removal and addition of facts.

The automatic determination of update operations’ results is
delicate and leads to performance problems related to
execution time. These problems are directly related to the
modeling approach of the program.

We introduce, now, the effect of update operations on
stratifiability and Mp model computation.
1) Update operations effects on stratifiability

After an update operation, we should, first of all, check that
stratifiability property of the program. Then, it is necessary to
define the relation between the maximal stratification of the
initial program P and the maximal stratification of the

resulting program P’. All the possibilities cases are presented
in tables I and II.

Several works used predicates sets, called supports [4], in
order to compute the resulting model Mp' after an update
operation. These supports are used to find out the facts to be
removed from the model Mp after the update operation. The
supports choice should minimize the number of facts
migrations and the maintenance cost of these supports. The
ideal situation is to have a support which determines exactly
the facts which must be removed from model to avoid facts
migrations [3], [8].
2) Update operations effects on the standard model

After studying update operations on stratified programs, we
distinguished two cases: (1) the addition or removal of an
explicit deduced fact has no effect on program stratifiability or
standard model and (2) the removal operation of such a fact is
not even significant. The explicit addition or removal of not
deduced fact or a clause may affect the program stratifiability
and its standard model. In this last case, an update operation
affects a number of deduced facts (known as induced updates)
because of clauses. The main concept concerning the
management of induced updates is their determination in an
efficient way.

III. SEPN FORMALISM

A. SEPN nets
The Stratified Extended Predicates Nets, noted SEPN [9],

[10], are based on an extension of RPENS nets [3], [9], [10],
[11], enriched with two new concepts: attribution colors to
transitions and the firing process of a transition.

TABLE I
EFFECTS OF ADDITION UPDATE OPERATIONS ON STRATIFIABILILY

Update operation Consequences Strati-
fiability

Fact q(a,b): the predicate q
is not defined in the
program P.

Stratum creation. Yes

Fact q(a,b): the predicate q
is already defined in the
program P.

Stratum modification. Yes

Clause: the predicate of the
head appears for the first
time.

Stratum creation. Yes

Clause: the predicate of the
head is already defined.

If the program is still
stratifiable :
- Stratum modification.
- Or fusion of several strata

Depends
on cases

TABLE II

EFFECTS OF REMOVAL UPDATE OPERATIONS ON STRATIFIABILILY

Update operation Consequences Strati-
fiability

Fact : the fact is composing
a stratum.

Stratum removal. Yes

Fact : the fact belongs to a
stratum composed of
several clauses.

Stratum modification. Yes

Clause: the clause
composes the stratum.

Stratum removal. Yes

Clause: the clause belongs
to a stratum composed of
several clauses.

- Stratum modification.
- Or the stratum is splited
into several strata.

Yes

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3575International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

94
9.

pd
f

In this section, we describe the SEPN formalism. For
further details concerning this approach, readers can refer to
[9], [10], [11].

An SEPN is defined by:
- A quintuple N = (P, T, C, V, K), where P, T, C, V and K

are respectively the set of places, the set of transitions, the
set of colours, the set of variables and the set of constants.

- Two relations α and β, where β is a finite subset of T×P
which elements are called unsigned arcs and α is a finite
subset of {+,-}×P×T which elements are called signed
arcs (α+ positive arcs set and α- negative arcs set).

- Two applications Iα et Iβ defined by:
o Iα : α → Z[V ∪ K]
o Iβ : β → Z[V ∪ K]

where Z[V ∪ K] is the set of finite formal combinations
of V ∪ K elements.

- A set Garde, where Garde(t), t being a transition, imposes
firing conditions between tokens contained in input
places.

- A bijective application Cl from T to C, which associates a
color to each transition.

B. Dynamic aspect of the SEPN
In a SEPN net, tokens are colored [9], [10], [11]. A colored

token is an element of the set Kn × P (C), where P (C) is a set
of parts of C. A colored token j has then this form:
j = ((x1, x2, …, xn), Col) where (x1,…, xn) is the argument of j
(arg(j)) and Col its path (path(j)). The path is a set of colors
saving the history deduction.

We define the following operations on the elements of the
set Kn × P (C):

- Equality: j = j’ ⇔ arg (j) = arg (j’) and path(j) = path (j’)
- Order relation ≤ : j ≤ j’ ⇔ arg (j)=arg (j’) and

path (j) ⊆ path (j’)
- Subtraction: if arg(j) = arg(j’) then

j – j’ = (arg(j), path(j) \ path(j’)).
- A token of the form j=(arg(j),{∅}) is called neutral token.
Consequently, we have these two results (1) the subtraction

to a token from itself gives a neutral token and (2) the addition
operation is idempotent (j + j = j).

Let R be an SEPN net and Mo a function from P to
Kn×P(C). The function Mo is called initial marking of R. This
function associates, initially, to each place of R a finite set of
colored tokens. The SEPN marking M is defined by the
association to each place a finite set of tokens.

The transition firing process in SEPN is different from
ordinary Petri nets. In fact, the production of new tokens
happens without removing the tokens used while firing the
transition. We make a distinction between valid transitions
from fireable transitions.

If the new token already exists in the destination place, it
will not be regenerated. This transition is then fireable but not
valid. If the token does not exist in the output place, the
transition is valid and is fired. By this way, an SEPN can not
contain double tokens. Each place p is km(p) bounded, where
m(p) is the marking of p and k is the cardinality of the set K.

IV. CORRESPONDENCE BETWEEN STRATIFIED PROGRAM AND
SEPN NETS

The SEPN formalism allows us to build efficient algorithms
for checking stratifiability, determination of the maximal
stratification, the computation of the standard model, and
management of update operations on facts and clauses
(explicit and induced updates). Indeed, we established a
correspondence between the SEPN formalism and stratified
program. This correspondence is presented in table III. Due to
space limitations, we do not demonstrate this correspondence.

V. SEPN ADVANTAGES

A. Stratifiability study and maximal stratification
determination using SEPN

Stratifiability checking is released after the definition of the
logical program and after each update operation. This consists
on detecting the presence of a negative circuit in the SEPN.
Once the stratifiability of a program is checked, it is necessary
to find out the maximal stratification in order to compute the
standard model. For this purpose, we give the following
definitions:
Definition 1: Let R be a SEPN and V = {p1, T1…, pn, tn}
(such as {p1…, pn} ∈ P and {T1.., tn} ∈ T) a strongly
connected component of R. We define a stratum of R as a
strongly connected component V of R with one of following
conditions:

- Card(V) >1
- Card(V)=1 and V = {p}, p ∈ P, with M(p) ≥ 0 or ∃ Ti∈T /

(Ti, p)∈β. Where M(p) is the marking of the place p.
After determining the SEPN strata, we put an order on

them. We introduced, for this purpose, the concept of stratified
reduced graph.
Definition 2: Let G be the set of the SEPN strata. The
stratified reduced graph of the SEPN is the graph Gr = (X, U),
where:

- Each node of X represents a stratum.
- And U = {(Si, Sj), i ≠ j | ∃ p ∈ Si and T ∈ Sj | (p,t) ∈ P},

where U is a finite set of arcs connecting strata.

TABLE III
CORRESPONDENCE BETWEEN STRATIFIED PROGRAM S AND RPES

Stratified program RPES
Program alphabet V ∪ K
A predicate p A place p
A fact q(a,b) A neutral token in the place q

((a,b),{∅})
A clause r A transition t
Link between the predicates’
variables and the clause body

Garde of the transition

Clause body Sub-sets of α+ and α- with their
respective labels

Head clause An element of β with its label
Standard model of the program Net marking
Program stratification Net stratification
Program strata Net strata
Addition or removal of a fact Addition or removal of a token
Addition or removal of a clause Addition or removal of a transition

and its related arcs

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3576International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

94
9.

pd
f

An arc of the stratified reduced graph is positive
(respectively negative) if there is a positive arc (respectively
negative) in the SEPN relating a place of Si and a transition
from Sj. The stratified reduced graph of an SEPN does not
contain circuits. It represents dependences between strata.
Definition 3: Let R be a stratified SEPN and V1,…, Vn a
maximal stratification of R. In the stratified firing process, the
firing of a transition in Vi, i ∈ [1..n], starting from a given
marking of SEPN, can be made only if the firing of all the
transitions belonging to Vj, j≤ i-1, is done.

B. Example
Let us consider the following program P:
P = F(f, c) ← ;

G(n, p) ← ;
A(x, z) ← C(y, z);
C(x, z) ← A(y, z), F(x, y);
D(z, y) ← G(z, y), not (C(x, z)) ;
G(x, z) ← D(x, y), G(y, z);

Figure 1 shows the SEPN corresponding to P. The program
is stratifiable since its SEPN does not contain recursion
through negation.

Fig. 1. SEPN net of the program P

Fig. 2. Reduced graph of P

The reduced graph of P is shown in figure 2. It shows the
maximal stratification of P, which is composed of these strata:

S1 A(x, z) ← C(y, z);
C(x, z) ← A(y, z), F(x, y);
G(n, p) ← ;

S2 D(z, y) ← G(z, y), not(C(x, z)) ;
G(x, z) ← D(x, y), G(y, z);

 S3 F(f, c) ← ;

C. Update operation optimization in SEPN
1) Update operation optimization of facts

The addition of a token in a place p may lead to: (1) the
addition of other tokens in the places related positively to p
and (2) the removal of tokens from the places negatively
related to p. In opposition, the removal of a token of a place p'
may lead to: (1) the addition of tokens in the places negatively
related to p' and (2) to the removal of tokens from the places

positively related to p'.
The use of colored tokens has the advantage of saving the

deduction history. This allows us to recognize the transitions
used in the firing process. Thus, it is easy to reduce facts
migration. In fact, the tokens that do not contain the
transition’s color related to the place, in their paths, will not be
touched.
2) Update operation optimization of clauses

The update of a clause is equivalent to the update of a
transition in the PRES net. Knowing the corresponding sub-
net of the clause and the stratified reduced graph, we find out,
directly, if the program remains stratifiable and its new
maximal stratification. After this step, the problem is reduced
to facts update, which is already solved.

VI. CONCLUSION
We proposed in this paper an approach, based on the SEPN,

for the manipulation of a large class of normal programs,
which is stratified programs. This class of logical programs is
very useful in several fields, in particular artificial intelligence
and deductive databases.

This approach covers all the aspects related to stratified
programs: data structures, stratifiability checking, maximal
stratification determination and incremental updates, knowing
stratifiability and the stratification properties on the initial
program. This approach was implemented and validated with
the STRPRO tool [6]. Obtained results are encouraging for
programs composed of, nearly, thirty rules.

In the future, we plan to study the algorithms complexity in
case of programs with significant clauses number (hundreds or
more).

REFERENCES
[1] J. L. Laurière, "Intelligence artificielle, résolution de problème par

l’homme et la machine", (Ed) Eyrolles, 1986.
[2] G. Gardarin, "Bases de Données Objet et Relationnel", (Ed) Eyrolles,

2000.
[3] A. Grissa-Touzi, "Contribution à l’Etude, à la Conception et au

Prototypage des Bases de Données Déductives", Ph. D. thesis. Dept. of
Computer Science, Faculty of Sciences of Tunis, Tunisia, 1994.

[4] G. Jager and R. Stark, "The defining power of stratified and hierarchical
logic programs", Journal .of Logic Programming, 1993, pp. 55-77.

[5] H. Farreny, "Les systèmes experts principes et exemple", (Ed)
Cepadues, Novembre, 1986.

[6] C. Jerad, A. Grissa-Touzi and H. Ounelli, “STRPRO tool for
Manipulating Stratified Programs Based on SEPN”, submitted for
publication in AISC 2005.

[7] J.W. Lloyd, "Fondement de la Programmation logique", (Ed) Eyrolles,
Paris, 1988.

[8] R. K. Apt and H. A. Blair, "Arithmetic Classification of Perfect Models
of Stratified Programs", Fundamenta Informaticae, vol. 14, 1991, pp.
339-343.

[9] A. Grissa-Touzi, C. Jerad and K Barkaoui, " Nouvelle Approche pour la
Définition et la Manipulation de la Négation par les Programmes
Stratifiés", Maghrebian Anales of Engineers, vol 19, N°1, 2005.

[10] C. Jerad, " Outil d’Analyse des Bases de Données Déductives Formulées
à l’Aide des Réseaux à Prédicats Etendus Stratifiés", Master memory,
Dept. of Electrical Engineering, National School of Engineers of Tunis,
Tunisia, July, 2003.

[11] A. Touzi and K. Barkaoui, "Un Formalisme de Modélisation et
d’Optimisation des Bases de Données Déductives Basé sur la Théorie
des Réseaux de Petri de Haut Niveau", 2nd Maghrebine Conference on
Software Engeneering and Artificial Intelligence, Tunis, 1992, p 99-115.

S1
S2 S3 +

_

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3577International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

94
9.

pd
f

