Simulation of Thin Film Relaxation by Buried Misfit Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Simulation of Thin Film Relaxation by Buried Misfit Networks

Authors: A. Derardja

Abstract:

The present work is motivated by the idea that the layer deformation in anisotropic elasticity can be estimated from the theory of interfacial dislocations. In effect, this work which is an extension of a previous approach given by one of the authors determines the anisotropic displacement fields and the critical thickness due to a complex biperiodic network of MDs lying just below the free surface in view of the arrangement of dislocations. The elastic fields of such arrangements observed along interfaces play a crucial part in the improvement of the physical properties of epitaxial systems. New results are proposed in anisotropic elasticity for hexagonal networks of MDs which contain intrinsic and extrinsic stacking faults. We developed, using a previous approach based on the relative interfacial displacement and a Fourier series formulation of the displacement fields, the expressions of elastic fields when there is a possible dissociation of MDs. The numerical investigations in the case of the observed system Si/(111)Si with low twist angles show clearly the effect of the anisotropy and thickness when the misfit networks are dissociated.

Keywords: Angular misfit, dislocation networks, plane interfaces, stacking faults.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1073665

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453

References:


[1] Derardja A., Adami L., Benyoussef S. and Bonnet R., Anisotropie de la relaxation elastique d'un reseau biperiodique de dislocations: theorie et application aux bicristaux de semi-conducteurs,Ann. Chim. Sci. Mat, Vol 29(4), 123-132, 2004.
[2] Föll H. et Ast D., TEM observations on grain boundaries in sintered silicon, Phil. Mag.A, Vol 40, 598-610, 1979.
[3] Bonnet R., Topographic effect of themisfit dislocation dissociation in threefold symmetry epitaxial systems, Phil. Mag. A, vol 79, 1909-1922, 1999.
[4] Belk J. G., Sudijono J. L., Zhang X. M., Neave J. H., Jones T. S. And Joyce B. A., Surface contrast in two dimensionally nucleated misfit dislocations in InAs / GaAs(110) heteroepitaxy, Phys. Rev. Lett., Vol 78, 475, 1997.
[5] Bonnet R, Evaluation of surface strain due to the reconstruction of atomically close-packed crystalline surfaces, Phys. Rev. B, Vol 61, 14059-14065, 2000.
[6] Joyce B. A., Jones T. S. and Belk J. G., Reflection high-energy diffraction/scanning tunnelling microscopy study of InAs growth on the three low index orientations of GaAs: Two-dimensional versus threedimensional growth and strain relaxation, J. Vac. Sci. Techno. B, Vol 16, 2376, 1998.
[7] Belk J. G., Surface aspects of strain relaxation during InAs/GaAs heteroepitaxy, Ph. D. thesis, Imperial College, University of London, 1997.
[8] Outtas T., Adami L., Derardja A., Madani S. and Bonnet R., Anisotropic elastic field of a thin bicrystal deformed by a biperiodic network of misfit dislocations, Phys. Stat. Sol.(a), Vol 188, 1041-1045, 2001.
[9] Hirth J.P. and Lothe J., Theory of dislocations, second edition (New York: Wiley), 375, 1982.
[10] Bourret A. and Fuoss P. H.,Solving an interface structure by electron microscopy and x-ray diffraction: The GaAs(001)-CdTe(111) interface, Appl. Phys. Lett. Vol 61, 1034-1036, 1992.
[11] Romanov A. E., Petroff P. M. And Speck J. S., Lateral ordering of quantum dots by periodic subsurface stressors, App. Phys. Lett., Vol 74, 2280-2282,1999.
[12] Coelho J., Patriarche G., Glas F., Sagnes I. and Saint-Girons G., Dislocation networks adapted to order the growth of III-V semiconductor nanostructures, physica status solidi (c), Vol 2, 1933 - 1937, 2005.
[13] MRS Symposium Proceedings Series, Nanostructured Interfaces, San Francisco, editor: 506 Keystone drive, Warrendale, PA 15086-7573 USA, Vol 727, 2002 MRS Spring Meeting.
[14] Fournel F., Moriceau H., Magnea N., Eymery J., Rouvière J. L., Rousseau K.and Aspar B., Ultra thin silicon films directly bonded onto silicon wafers, Mat. Sci. And Engineering, B 73, 42-46, 2000.
[15] Fournel F., Moriceau H., Magnea N., Eymery J., Rouvière J. L., Rousseau K.and Aspar B., Accurate control of the misorientation angles in direct wafer bonding, Applied Physics Letters- Vol 80, 793-795, 2002.
[16] Renaud G., Ducruet M., Ultrich O. and Lazzari R., Apparatus for real time in situ quantitative studies of growing nanoparticles by grazing incidence small angle X-ray scattering and surface differential , Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. Vol 222, 667-680, 2004.
[17] Zheleva T., Ichimura M., Oktyabrsky S. and Narayan J., Atomic scale characterization of InGaAs/GaAsSi heterostructure by HREM, atomistic modeling and multislice image simulation, Semicond. Charac.(Int. Worshop), Conférence en 1995, éditeurs: Bullis et col., Imprimeur : AIP Press, Woodbury, N. Y., USA, 688-692, 1996.
[18] Rouviere J. L., Rousseau K., Fournel F. and Moriceau H., Hudge difference between low and high angle twist grain boundaries: the case of ultrathin (001) Si films bonded to (001) Si Wafers, App. Phys. Lett.,Vol 77, 1135- 1137, 2000.
[19] Bott M., Hohage M., Michely T. and Comsa G., Phys. Rev. Lett., 70,1993,1489.
[20] Nakajima K., Calculation of stresses in strained semiconductor layers, Mater. Res. Soc. Symp. Proc. 338, 149-160, 1994.
[21] Gutkin M. Y. and Romanov, K. N. Mikaelyan and Ovid'ko I. A., Generation and evolution of partial misfit dislocations and stacking faults in thin-film heterostructure, Physics of the solid State, Vol 43, 42-46, 2001.