
Revised PLWAP Tree with Non-frequent Items for
Mining Sequential Pattern

R. Vishnu Priya, A. Vadivel

Abstract—Sequential pattern mining is a challenging task in data

mining area with large applications. One among those applications is
mining patterns from weblog. Recent times, weblog is highly
dynamic and some of them may become absolute over time. In
addition, users may frequently change the threshold value during the
data mining process until acquiring required output or mining
interesting rules. Some of the recently proposed algorithms for
mining weblog, build the tree with two scans and always consume
large time and space. In this paper, we build Revised PLWAP with
Non-frequent Items (RePLNI-tree) with single scan for all items.
While mining sequential patterns, the links related to the non-
frequent items are not considered. Hence, it is not required to delete
or maintain the information of nodes while revising the tree for
mining updated transactions. The algorithm supports both
incremental and interactive mining. It is not required to re-compute
the patterns each time, while weblog is updated or minimum support
changed. The performance of the proposed tree is better, even the
size of incremental database is more than 50% of existing one. For
evaluation purpose, we have used the benchmark weblog dataset and
found that the performance of proposed tree is encouraging compared
to some of the recently proposed approaches.

Keywords—Sequential pattern mining; Weblog; Frequent and
Non-frequent items; Incremental and Interactive mining

I.INTRODUCTION
HE frequent patterns present in database of any categories
can be used for extracting interesting patterns for
knowledge discovery. Among various well-known data

mining techniques, the association rule mining is considered
as one of the popular problems and the primary step is to
identify the patterns. In sequential database, the items in
sequences exist in certain order and items may reoccur many
times in same sequence. Mining this characteristic of sequence
for finding any specific orders of events satisfying minimum
support exist. Sequential data is used in many applications
such as customer shopping sequences, web click stream,
biological sequence, business organization, super market,
financial data, medical data, scientific data, analysis of DNA
sequence, system performance and telecommunication
network. Our proposed work is based on mining of sequential
patterns from weblog data. Sequences in weblog database
consist of pair of attributes namely user id and access
information. The events in access information are single and
in case of general sequential database, it contains set of events,
e.g. for web access sequential is {100, <a, b, c>}. The
knowledge discovered from web access log are relationship
among different user access, direct marketing in e-commerce,
information for server performance and useful for
restructuring a website infrastructure.

R. Vishnu Priya is with the Department of Computer Applications, National
Institute of Technology, Tamilnadu, India (e-mail: vissaru@yahoo.co.in).
A. Vadivel is with the Department of Computer Applications, National
Institute of Technology, Tamilnadu, India (e-mail: vadi@nitt.edu).

Further, the data related to web are highly dynamic and new
sequences are inserted/ deleted/ updated at any time in the
weblog. In addition, the users may frequently change
threshold value to acquire required output, which result in
reconstruction of prefix tree many times.

In this paper, we propose a RePLNI-tree structure, which
scan the web access log only once for mining the sequential
patterns and supports both incremental and interactive mining.
The advantage of this approach is that it reduces the
processing time, provides effective mining from highly
dynamic weblog and users may frequently change threshold.

We organize the rest of the paper as follows. We discuss the
related work in the next section. In Section III, the procedure
for construction of the proposed tree is presented. We
summarize the pattern mining with additional functionalities of
the tree in Section IV. We present the experimental result in
Section V and conclude the paper in the last section of the
paper.

II. RELATED WORK

The two famous approaches, which mines sequential pattern
from the database are candidate generation-and-test approach
and non candidate generation-and-test approach. The
algorithms related to the candidate generation-and–test
approach is Apriori based algorithms called AprioriAll
proposed by Agarwal et al [1], which is the first technique that
mine sequential patterns from the database. The sequential
patterns are mined using Level-wise search. The sequential
pattern of length ‘k’ candidate set are generated from the
previously generated (k+1) patterns. The supports of each
candidate are collected by scanning the database once. While
the support of candidate pattern is less than a user-specified
threshold, they are pruned and the remaining sets are used to
find the next level of patterns. This process is terminated while
there are no candidate sets with length (k+1), which can be
generated from the sequential patterns of ‘k’. Later, many
extensive studies on the improvements of Apriori algorithm
has been proposed include GSP [13], PSP [6], Gsequence
[12], SPADE [16] and graph traversal algorithm [7]. However,
these algorithms require multiple scan of large database and
large memory space to handle candidate sets. This can be
avoided by compressing the database effectively. The non
candidate-and-test approach overcome those drawback using
the data structure like graphs, tree and database projection to
mine sequential patterns. Some of the algorithms are suffix
tree [15], Prefix Span [10] etc., Algorithm mine patterns from
weblog database include WAP-tree [11] and PLWAP-tree [3].
WAP-tree compress the weblog data into highly compact
prefix tree structure for mining sequential patterns and the tree
is built with two scans. During the first scan, set of all frequent
events are collected. In the second scan of the weblog, a
WAP-tree is built only for the frequent events of each

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1002International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

86
6.

pd
f

transaction. Finally, intermediate WAP-tree is constructed for
mining sequential patterns. This process of intermediate tree
construction is continued till the WAP-tree has only one
branch or is empty. Based on the above discussions, it is
observed that the number of intermediate tree construction
increases the mining time considerably and it is required to
reduce the same for mining sequential patterns efficiently.

PLWAP-tree mine sequential patterns without constructing
intermediate trees and this result in lesser mining time. The
PLWAP-tree construction is similar to WAP-tree and the only
additional change is the assignment of position codes to each
node of the prefix tree for quickly defining the ancestor and
descendant of any node. This approach use the prefix
sequential search technique for mining, which work better
compared to WAP-tree. However, the PLWAP-tree does not
support the additional functionality such as incremental
mining. Since, the information related to the weblog data are
changing overtime, this approach may not be suitable for
mining sequential patterns.

In 1997, Wang proposed a suffix tree approach, which
construct a suffix tree with ‘n’ branches for a sequential with
‘n’ events (i.e.) events in S is mapped to a tree in breadth
manner, the mining of sequential patterns are performed in
post-order fashion. Due to the fact of constructing ‘m’ suffix
trees for the ‘m’ sequential records, this algorithm consumes
large memory space. Parthasarathy et al. proposed ISM
algorithm [9], which is related to Apriori like algorithm. This
algorithm divides the sequences into two sets such as Frequent
Set (FS) and Negative Border (NB). FS consist of all frequent
events and NB denotes all the non-frequent events. This
approach is performed in two phase and the supports of
elements in NB and FS sets are updated in phase one. In phase
II, NB and FS beyond is done. While non frequent events
become frequent events after updating transactions, this
algorithm need to rescan the entire database and may increase
the execution time for mining the patterns. Kao et. [17]
designed the GSP+ algorithm and it also rescan the entire
database while non frequent events become frequent, once
transactions are updated. In order to generate sequential
patterns, this algorithm requires level wise candidate
generation, pruning, in which Prefix Span sequential mining
technique is used for mining the updated database. MFS+
algorithm [5] is GSP based incremental sequential algorithm.
It estimates Maximal Frequent Sequence Set (MFSS). In each
iteration, MFSSs is eliminated in the list by using the same
pruning rules used in the GSP+. It confirms either the item is
frequent or not without rescanning the unchanged database. In
our approach the entire old database is not scanned while the
small items become large, during which this algorithm scan
the whole database. IncSpan algorithm proposed by Cheung et
al. [2], use the concept in Prefix Span sequential mining
technique. It stores the patterns, whose support is less than
minimum support but greater than tolerance support called
Semi Frequent Sequences (SFS). Once transactions are
updated (db+), only db+ are scanned to recognize the FS, SFS
and six types of changed patterns. If the patterns are frequent
in both old and updated database or SFS in old database but
frequent in updated database or SF in both old and updated
database, then the algorithm doesn’t rescan the database, but
calculate the support from existing frequent patterns. While

the patterns are new in updated database, the algorithm scan
the incremental database and mine the pattern using prefix
span technique and database projection are performed. If the
patterns are non-frequent in old database, however frequent or
SF in updated database, the entire database is scanned and the
database projection is performed. In last case, the algorithm
consumes more time for rescanning the entire database and
requires more space for performing intermediate database
projections and buffering both frequent and semi-frequent
patterns. Ezeife et al. [4] have introduced RePL4UP algorithm,
which is similar to the construction of PLWAP-tree but while
adding new transactions, existing tree has to be revised for
retrieving the patterns. While the transaction are updated,
RePL4UP algorithm receive seven inputs such as size of
database |DB|, incremental database (U), minimum support
(s), old tree (RePLUPDB), small code profile (Scode

DB) (i.e.)
Scode consist of non frequent events along with position code,
old frequent patterns (FPDB) and old candidate list
C1(candidate 1-items), F1 (frequent 1-items) and S1 (small 1-
items). Updated database is scanned to obtain the candidate
lists like C1

db, F1
db, S1

db and Sdb. Set union and intersection
operations are performed on old and new candidate lists to
retrieve the candidate lists for entire database such as C′1, F′1,
and S′1. The details in F′1, S′1, F1 and S1 are used to classify
the items in C′1 into six item categories such as frequent-
frequent, frequent-small, small-frequent, small-small, new-
frequent and new-small. This enables the information about
the items to be inserted/ deleted to get the current tree. The
items in frequent-small set are deleted from RePL4UPDB tree
and the deletion starts from the items in header table to each
node label on the tree until its final leaf node is deleted. Every
deleted node as its position code is saved in Scode profile. The
remaining details of the nodes such as counts and position
codes in the tree are adjusted. Next, items in small-frequent
are inserted into RePL4UP tree using the Scode profile and the
patterns are mined from the modified branches of the updated
RePL4UPDB tree to obtain the revised frequent pattern
(ReFPDB). The tree is built for the incremental database called
RePL4UPdb for obtaining the new frequent patterns (FPdb).
The union FPDB-ReFPDB, ReFPDB and FPdb will retrieve the
sequential patterns. Finally, the tree is ready for the next round
by updating RePL4UPDB tree with the frequent sequential
transactions from incremental database. The efficiency of the
algorithm based on time and space are low due to the
insertion/ deletion of items. This algorithm takes higher time
and works well only if the size of incremental database 50%
lesser than the existing one and performance went down for
higher size database.

It is imperative from the above discussion that, the
RePL4UP- tree algorithm consumes space for maintaining the
details relating to candidate lists and support for all old,
updated and revised. It also preserves the particulars of deleted
nodes for later use. While revising the tree for updated
transactions, the operations such as union/ intersection are
performed to generate the new candidate lists. Additionally the
candidate list is categorized into six item categories and
adjustment of pointers for newly inserted/ deleted of nodes in
the tree. These steps incur very high execution time and hence
the tree should be constructed with overcoming all the above

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1003International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

86
6.

pd
f

mentioned drawbacks. In this paper, we have proposed the
RePLNI-tree, which scan the database only once and the time
for sequential pattern mining is also found to be low, since
there is no additional operation and insertion/ deletion of
nodes are performed. In addition the algorithm requires less
space, since, the details of candidate lists and Scode are
unnecessary to our work. This algorithm supports incremental
and interactive mining as well.

III. THE PROPOSED TREE

The proposed approach captures sequence information in
the weblog to construct the tree along with header table for
mining sequence patterns. Each event in the access sequence
is inserted as a branch into the tree based on the events
arranged in each sequence. This course of action will construct
the tree with single scan and reduce the time to build tree. The
order of events are not rearranged to follow the sequence
pattern strategy (i.e.) an order exist between the item. In
addition, the proposed tree supports both incremental and
interactive mining, hence, the non-frequent events are not
pruned. The construction strategy of the proposed tree is
illustrated with suitable example given in sample table. In
Table I(a), the TID is the transaction id and the list of all
events is considered under the attribute of web access
sequence.

TABLE I
SAMPLE TRANSACTIONS (a) EXISTING (b)INCREMENTAL DATABASE

TID Web Access Sequences
1 a d b a c
2 a e d c a c e
3 d a d a
4 a f d a c f c
5 a d e g f h

TID Web Access
Sequences

6 d a d a e f
7 e a g f h

 (b)

 (a)
Initially, an empty node is created with null as the label.

The first sequence, which is <a d b a c>, scanned once to
insert as a branch. Since there is no child for root node, this
sequence is directly inserted as the branch of root along with
its occurrences. While insertion, the count of the
corresponding item in the header table is updated and unique
position code is assigned to each node for recognizing the
ancestor/descendant relationships between nodes of the tree.
Let the inserted branch be <a:1 d:1 b:1 a:1 c:1>. The next
sequence is scanned once and the first event in sequence is
checked with children of root node. If events are common,
merge with the existing branch with increment of count and
the process continue to check with the next event. Otherwise,
events can’t share with existing branch, hence, it will be
inserted as a new branch/ path. In this case, a=a thus, merge
with existing branch and count is incremented. Since there are
no other common events in the sequence, the remaining events
are added as a new path to ‘a’. This process is continued till all
the sequence is inserted as the branch into the tree. The
insertion of rest of the transactions is performed in similar
fashion. In Fig. 1, we depict the header table and proposed tree
with position code.

Fig. 1 RePLNI-tree

In order to mine sequential patterns efficiently, the
proposed tree must be traversed fast. To facilitate the tree
traversal, the proposed tree maintains a header table, where
each event is pointing to the first occurred node and nodes
with same name are linked in pre-order fashion. Due to the
lack of clarity, the links are not depicted in the Fig. 1 and the
pre-order traversal is done in the tree.

A. Algorithm for tree construction.
Input: Weblog DB, Total No of transactions N.
Output: RePLNI-tree along with header table .
Method:

1. Read DB, N.
2. Create the root of a tree T and label it as

“null”.
3. for each transaction tj till the end of DB
4. Scan the transaction once.
5. for each event ei in tj
6. If T as a child C and C.name= ei.name then
7. C.support +=1.
8. else
9. create a new_node ei;
10. ei support=1;
11. ei predecessor_link be linked to T;
12. ei successor_link be linked to rest of the

event ei in tj
13. End if
14. Increment the count of corresponding event in

the header table
15. end for
16. end for
17. Use preorder technique to link the events with

same label.

IV. SEQUENTIAL PATTERNS MINING AND FUNCTIONALITIES OF
PROPOSED TREE

A. Sequential Pattern Mining
One of the important tasks in association rule mining is to

discover the sequential patterns. In this section, we illustrate
the sequential pattern mining from the proposed tree using
prefix sequential search technique used in PLWAP tree [2].
From Fig. 1, we observe that the proposed tree and header
table contains both frequent and non-frequent events. All the
events are linked in preorder fashion to mine the sequential
patterns. In our approach, while mining the patterns, only
frequent events in header table (i.e.) those events satisfy the
minimum support is taken into consideration and non-frequent
events are discarded virtually. It means, all events and its
relative links exist physically, however, while mining, non
frequent events are not considered. We can mine the patterns

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1004International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

86
6.

pd
f

related to the frequent events with the help of links between
the same labels for traversing prefix sequence and identifying
their suffix trees as well as the next prefix patterns efficiently.
The sequential patterns are found for all the frequent events
from top to bottom in header table. Let us consider the
frequent event er in the header table, using the links of the
event, we can calculate the count of er, which is the sum of all
counts of first occurred er‘s in all the path of current suffix tree.
If the sum of the count is greater than the user defined support,
this event er is appended to the sequential pattern list. Next
consider the events below er as the roots of the current suffix
tree and find the next prefix frequent events e1 in all path of
the current suffix tree. Using the same methodology, we can
calculate the counts of e1, if ‘e1’ is frequent then e1 is
appended to the already computed sequential pattern list.
Now, consider the events below e1 as roots and this process of
searching is continued for each next prefix event along the
path of current suffix tree until there is no suffix trees are
taken into consideration for search. This action is performed
for all those frequent events in the header table to retrieve the
sequential patterns.

Let us illustrate this mining process with the suitable
example. The first element in the header table is ‘a’. Using the
link of ‘a’, we calculated the count of first occurrences of ‘a’
in all path of suffix tree as 5 and shown in Fig. 2(a). Hence, ‘a’
is appended to the sequential pattern list. Now, we have to
search for 2-sequences such as {aa, ac, ad}, since, the events
b, e, f, g and h are non-frequent and the link related to those
events only are considered for mining. The mining process is
continued with next suffix tree rooted at {d:2:11 , e:1:110 ,
f:1:1100, d:1:1011} for finding 2-sequence, which is shown in
Fig. 2(a). In order to find ‘aa’ frequent sequence, we follow
the link of ‘a’ in the current suffix tree. Once the status of ‘a’
is found, the pattern ‘aa’ is appended to the list. The events
below ‘a’ is considered as root of next suffix tree, which is
depicted in Fig. 2(b). This process is continued until no suffix
trees are taken into consideration for search. The only
difference for mining the patterns from PLWAP and the
proposed tree is that while mining the patterns using the
proposed tree, the links related to the non-frequent events are
not considered.

(a)

(b)

 Fig. 2 Mining Patterns (a) for “a” (b) for “aa”

B. Incremental and Interactive Mining
While new transactions are updated in the given sample

transactions, presented in Table I(b), each updated transactions
is inserted as branches into tree and the counts corresponding
to that events in the header table are updated using the
procedure presented in Section 3. The preorder linkage is
constructed for the newly inserted branches and the patterns
can be retrieved efficiently using the prefix sequence search
technique. While the weblog is updated with new transactions,
it is not required to scan the entire transactions and initiate the
sequential pattern mining process from the beginning. Below,
we illustrate the incremental mining with a suitable example.
TID’s 6-7 are updated in the sample transactions and are
shown in Table 1(b). The transactions <d a d a e f > and <e a g
f h> are scanned once and inserted as existing branch <d:2:10,
a:2:101, d:2:1011, a:2:10111, e:1:101111, f:1:1011111>. New
branch <e:1:100, a:1:1001, g:1:10011, f:1:100111,
h:1:1001111> in the existing tree (Fig. 1) to built as new tree
(Fig. 3). Preorder traversal is used to build the new linked for
the newly constructed tree. The frequent events from this
newly constructed tree are {a, d, e, f}. Rest of the link related
to the non frequent events is virtually discarded.

Fig. 3 Newly revised tree for both old and incremental database

Since our proposed tree consists of both frequent and non-
frequent events, hence the proposed tree is suitable for
interactive mining. If minimum support given by the user is
too low or too high, there is a possibility that some of the
important patterns may be missed. Interactive mining provides
the user an opportunity to interactively alter the minimum
support. In interactive mining, the transactional database
usually remains unchanged and only minimum support value

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1005International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

86
6.

pd
f

is changed. Thus, the tree is constructed only once for a given
database and used for mining with various minimum support
values. This ensures that the tree construction cost can be
reduced to some extent over several runs of the mining
process. Similar to other interactive mining algorithms, mining
time in the proposed tree is reduced considerably by reusing
the sequential patterns mined in the previous round for the
current round with different minimum support value.

V. EXPERIMENTAL RESULTS

In this section, we present the performance of RePLNF-tree
for mining sequential patterns. RePL4UP is the recently
proposed algorithm outperforming all other incremental
sequential algorithms such as Incspan, GSP+, MFS+ and non
incremental sequential pattern mining algorithm such as
PLWAP, which is stated in [3]. For evaluation, we have used
the database available at (http: //www.almaden.ibm.com
/software/quest/Resources/index.shtml). The database
description is given as T10.N.30.U200K, where T represents
average number of items per transaction, N is the number of
distinct items and U represent the total number of transactions.

TABLE II
EXECUTION TIME FOR VARIOUS INCREMENTAL DATABASE SIZE

Execution time of these algorithms is obtained by altering

the incremental database size and without altering the values
of both minimum support and updated database. The
experiment is performed with incrementing the database sizes
of 10, 20, 40, 60, 80, 100% of entire database (U), where
|U|=200,000 records and with fixed minimum support of 1%.
In the final output, the number of frequent patterns (FPs) and
total number of frequent 1-items (F1’s) for various
incremental database sizes are 134 and 38 respectively. In
table II, the first and second rows show the execution time of
PLWAP and RePLNI algorithms, which is implemented in C.
The third row represents the relative comparison between the
execution times of RePLNF and PLWAP algorithms. The
relative comparison between the execution time of RePL4UP
and PLWAP algorithms are obtained from [3] is specified in
fourth row. From Table II, we can notice that the execution
time of proposed tree takes lower time compared to PLWAP.
For the lower incremental database size the relative
comparison time of the proposed approach is same as the
relative comparison times obtained from [3], since the
operation like insertion/ deletion of the nodes and saving/
retrieving the details of Scode and candidate lists are less in
RePL4UP algorithm. While, increasing the size of incremental
database, the performance enhancement of our approach is
notably high compared to comparison from [3]. This is due the
statement from [3], that the overhead of building, repairing the

old tree and updating the structure for next round mining with
the small code. In current world, the size of transactions
updated with existing one is more than 50%, however,
RePL4UP algorithm works better while the incremental
database is less than 50% of exist database. In our work, even
though the size of the incremental database is high (i.e.) more
than 50%, it will not affect the performance, since, the
incremental approach is performed by revising the existing
tree (i.e.) as it is only insertion of transactions, which takes
less time compared to the work done in RePL4UP algorithm.
Thus, from the above statement, we conclude that the
proposed tree is better for both time and space.

VI.CONCLUSION
Mining Sequential pattern from large database is used for

knowledge discovery. There are various schemes and method
proposed for knowledge discovery both in academic and
industry. Among various approaches, tree based approaches
are found to be well-known and extracts sequential pattern
efficiently. Some of the recently proposed well-known trees
are discussed in literature survey consumes large time for
patterns extraction. In this paper, we have proposed an
algorithm, which captures the entire weblog data with single
scan to construct tree along with header table. While mining,
the preorder technique is used and the links related to the non-
frequent items are not taken into consideration. RePL4UP-tree
always consumes more time and space to perform various
operations and holds the required details to be used for next
round. The proposed tree will not hold/ store the unnecessary
information. It takes lesser time for mining sequential pattern
compared to RePL4UP. The algorithm overcome the
drawback of RePL4UP-tree algorithm, which performs well
only if the size of incremental database is 50% lesser than the
existing one. We pictorially explained the proposed work with
suitable example. Additionally, we have showed
experimentally that the proposed tree supports both
incremental and interactive mining. The tree is constructed for
all the items in weblog irrespective of whether the, items are
non-frequent or frequent. While the new transactions are
updated, the already existing tree is revised for updated
transactions. We have estimated the performance of the
proposed tree on benchmark weblog. It is noticed from the
experimental result that the time taken by the proposed tree is
encouraging.

ACKNOWLEDGMENT
The work done by Dr. A.Vadivel is supported by research

grant from the Department of Science and Technology, India,
under Grant SR/FTP/ETA-46/07 dated 25th October, 2007
and DST/TSG/ICT/2009/27 dated 3rd September 2010.

REFERENCES
[1] R. Agrawal and R. Srikant, “Mining sequential patterns,” In:

Proceedings of the 11th Int’l conference on data engineering, Taipei,
1995, pp 3–14.

[2] H. Cheung, X. Yan and J. Han, “IncSpan: incremental mining of
sequential patterns,” In: Proceedings of the ACM SIGKDD international
conference on knowledge discovery and data mining, Seattle, 2004, pp.
527–532.

[3] C.I. Ezeife, Yi Lu and Yi Liu, “PLWAP sequential mining: open source
code,” In: Proceedings of the open source data mining workshop on

Algorithms

Execution time in see at different incremental
db size on support 1%

10% 20% 40% 60% 80% 100%
PLWAP 3.187 3.187 3.187 3.187 3.187 3.187
RePLNF 0.458 0.782 1.093 1.25 1.39 1.516

Our Relative
Comparison

6.959 4.075 2.916 2.549 2.293 2.102

Obtained
Relative

Comparison

6.991 4.083 1.976 1.496 1.101 1.248

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1006International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

86
6.

pd
f

frequent pattern mining implementations, in conjunction with ACM
SIGKDD, Chicago, August 21–24, 2005, pp 26–29.

[4] C.I. Ezeife and Yi Liu, “Fast incremental mining of web sequential
patterns with PLWAP tree,” Int J Data Mining Knowledge Discovery,
Springer Science Publisher, vol. 19, 2009, pp 376–416.

[5] B. Kao, M. Zhang, C-LYi and D.W Cheung, “Efficient algorithms for
mining and incremental update of maximal frequent sequences,” Int J
Data Mining Knowledge Discovery, Springer Science Publisher, vol. 10,
2005, pp 87–116.

[6] F. Masseglia, P. Poncelet and R. Cicchetti, “An efficient algorithm for
web usage mining,” Netw Inform Syst Journal, vol. 2(5–6), 1999, pp
571–603.

[7] A. Nanopoulos and Y. Manolopoulos, “Mining patterns from graph
traversals,” Data Knowledge Engineering, vol. 37(3), 2001, pp 243–266.

[8] S. Nguyen, X. Sun and M. Orlowska, “Improvements of incSpan:
incremental mining of sequential patterns in large database,” In:
Proceedings 2000 Pacific-Asia conference on knowledge discovery and
data mining (PAKDD’05), 2005, pp 442–451.

[9] S. Parthasarathy, M.J Zaki, M. Ogihara and S. Dwarkadas, “Incremental
and interactive sequence mining,” In: Proceedings of the 8th
international conference on information and knowledge management
(CIKM99), Kansas City, pp 251– 258.

[10] J. Pei, J. Han, B. Mortazavi-Asl and H. Pinto, “PrefixSpan: mining
sequential patterns efficiently by prefix projected pattern growth. In: The
proceedings of the 2001 international conference on data engineering
(ICDE ’01), pp 215–224.

[11] J. Pei, J. Han, B. Mortazavi-asl and H. Zhu, “Mining access patterns
efficiently from web logs,” In: proceedings 2000 Pacific-Asia
conference on knowledge discovery and data mining (PAKDD’00),
2000, Kyoto, pp 396–407.

[12] M. Spiliopoulou, “The laborious way from data mining to webmining,”
Journal Computer System Science Eng, Special Issue Semant Web
,vol.14, 1999, pp 113–126.

[13] R. Srikant and R. Agrawal, “Mining generalized association rules,” In:
Proceedings of the 21st int’l conference on very large databases
(VLDB), Zurich,1995.

[14] R. Vishnu Priya, A.Vadivel and R.S. Thakur, “Frequent Pattern Mining
Using Modified CP-Tree for Knowledge Discovery,” In the proceedings
of international conference ADMA’10, Part I, LNCS 6440, 2010, pp.
254–261.

[15] K. Wang, “Discovering patterns from large and dynamic sequential
data,” J Intell Information System, vol. 9(1), 1997, pp 33–56

[16] M.J Zaki, “SPADE: an efficient algorithm for mining frequent
sequences,” Machine Learning, vol.42, 2000, pp 31–60.

[17] M. Zhang, B. Kao, D. Cheung and C-L.Yip, “Efficient algorithms for
incremental update of frequent sequences,” In: Proceedings of the sixth
Pacific-Asia conference on knowledge discovery and data mining
(PAKDD), 2002, pp 186–197.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1007International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

86
6.

pd
f

	v81-1.pdf
	v81-2.pdf
	v81-3.pdf
	v81-4.pdf
	v81-5.pdf
	v81-6.pdf
	v81-7.pdf
	v81-8.pdf
	v81-9.pdf
	v81-10.pdf
	v81-11.pdf
	v81-12.pdf
	v81-13.pdf
	v81-14.pdf
	v81-15.pdf
	v81-16.pdf
	v81-17.pdf
	v81-18.pdf
	v81-19.pdf
	v81-20.pdf
	v81-21.pdf
	v81-22.pdf
	v81-23.pdf
	v81-24.pdf
	v81-25.pdf
	v81-26.pdf
	v81-27.pdf
	v81-28.pdf
	v81-29.pdf
	v81-30.pdf
	v81-31.pdf
	v81-32.pdf
	v81-33.pdf
	v81-34.pdf
	v81-35.pdf
	v81-36.pdf
	v81-37.pdf
	v81-38.pdf
	v81-39.pdf
	v81-40.pdf
	v81-41.pdf
	v81-42.pdf
	v81-43.pdf
	v81-44.pdf
	v81-45.pdf
	v81-46.pdf
	v81-47.pdf
	v81-48.pdf
	v81-49.pdf
	v81-50.pdf
	v81-51.pdf
	v81-52.pdf
	v81-53.pdf
	v81-54.pdf
	v81-55.pdf
	v81-56.pdf
	v81-57.pdf
	v81-58.pdf
	v81-59.pdf
	v81-60.pdf
	v81-61.pdf
	v81-62.pdf
	v81-63.pdf
	v81-64.pdf
	v81-65.pdf
	v81-66.pdf
	v81-67.pdf
	v81-68.pdf
	v81-69.pdf
	v81-70.pdf
	v81-71.pdf
	v81-72.pdf
	v81-73.pdf
	v81-74.pdf
	v81-75.pdf
	v81-76.pdf
	v81-77.pdf
	v81-78.pdf
	v81-79.pdf
	v81-80.pdf
	v81-81.pdf
	v81-82.pdf
	v81-83.pdf
	v81-84.pdf
	v81-85.pdf
	v81-86.pdf
	v81-87.pdf
	v81-88.pdf
	v81-89.pdf
	v81-90.pdf
	v81-91.pdf
	v81-92.pdf
	v81-93.pdf
	v81-94.pdf
	v81-95.pdf
	v81-97.pdf

