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Abstract—In the context of channel coding, the Generalized Belief
Propagation (GBP) is an iterative algorithm used to recover the
transmission bits sent through a noisy channel. To ensure a reliable
transmission, we apply a map on the bits, that is called a code. This
code induces artificial correlations between the bits to send, and it
can be modeled by a graph whose nodes are the bits and the edges are
the correlations. This graph, called Tanner graph, is used for most
of the decoding algorithms like Belief Propagation or Gallager-B.
The GBP is based on a non unic transformation of the Tanner graph
into a so called region-graph. A clear advantage of the GBP over
the other algorithms is the freedom in the construction of this graph.
In this article, we explain a particular construction for specific graph
topologies that involves relevant performance of the GBP. Moreover,
we investigate the behavior of the GBP considered as a dynamic
system in order to understand the way it evolves in terms of the time
and in terms of the noise power of the channel. To this end we make
use of classical measures and we introduce a new measure called the
hyperspheres method that enables to know the size of the attractors.

Keywords—iterative decoder, LDPC, region-graph, chaos.

I. INTRODUCTION

THE channel coding is a research field whose purpose
is to protect an information to transmit from environ-

mental disturbances. The first step is the encoding of the
information, a procedure in which the information, modeled
as a sequence of k bits u1, . . . , uk, is mapped to a larger
sequence of N bits x1, . . . , xN . The map consists in artificial
correlations called constraints or parity-check equations. In [1]
are introduced the Low-Density Parity-Check (LDPC) codes
which are a widespread technique to encode the information.
Such a code can be represented by a Tanner graph [2], a
graphical representation which turns out to be very useful in
the second step, the decoding. In this part, the bits transmitted
though a random noisy channel are iteratively handled by a
decoding algorithm to create an associated output sequence
of N bits that verify the whole set of parity-check equations
and that must be as close as possible to the input sequence.
One of the most famous decoding algorithm is the Belief
Propagation (BP) introduced in [3], extensively studied in [4],
[5], [6], which is deemed to be the optimal message-passing
algorithm in the case the Tanner graph of the LDPC code
is loopfree. However, in most cases the Tanner graph is not
loopfree [7] that involves that the BP becomes suboptimal. To
circumvent this problem has been proposed the Generalized
Belief Propagation (GBP) [8], [9] which is an adaptation of the

Kikuchi approximation [10], [11] used in statistical physics.
This algorithm is a message-passing algorithm which maps
the Tanner graph to a non unic region-graph whose edges
are media messages. The non uniqueness of the region-graph
involves a large degree of freedom, thus it implies a possible
way to go beyond the BP.

Along the whole paper, we focus on a particular LDPC
code, the Tanner code [12] whose main property in our study
is the fact that it can be entirely described by a set of particular
combinations of loops called the Trapping-Sets [4], [13] that
we use for the region-graph construction. The second section
first deals with the preliminaries about the Tanner graph and
the Belief Propagation. In the third section is explained the
region-graph construction rules and the equations of the GBP
with a novel construction of the region-graph for the Tanner
code. The last section is dedicated to the exposure of some
measures of dynamics to better understand the GBP and to
highlight its relevant properties. Also we introduce a new
measure called the hyperspheres method that enables to get
the size of the attractors, that helps to evaluate the divergence
of the algorithm.

II. PRELIMINARIES

A. The Tanner graph

Let us consider a set of N binary random variables
X = {X1, . . . , XN} whose global state is denoted by x =
[x1, . . . , xN ]. In the following of the article, we use the
notation x = [x1, . . . , xN ] to denote both the variables and
their states. An LDPC code is built by a set of M constraints,
or parity-check equations, C = {c1, . . . , cM} such that for
each check cj :

cj =
∑

xi∈Nj

xi

where Nj is a subset of {x1, . . . , xN} called the neighborhood
of cj depending on the LDPC code, and the sum is computed
over the Galois field GF(2). The neighborhood of a variable
xi is denoted by Ni and it is built by the set of checks {cj}j
such that xi ∈ Nj . We consider that a check cj and a variable
xi, such that xi ∈ Nj , form an edge eij between two nodes
inside an undirected bipartite graph called the Tanner graph
G = (X ∪ C, {eij}). This graph is used as the media for the
propagation of messages for the BP algorithm detailed in [3],
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[2]. An example of a Tanner graph is displayed on the figure 1.

x0 x1 x2 x3 x4 x5 x6

c0 c1 c2

Fig. 1. Tanner graph of the Hamming code

By applying the constraints C on the variables X we obtain
a Markov random field whose joint probability distribution
is p(X = x) written simply p(x). Each variable Xi has
its own marginal probability distribution pi(xi). We denote
respectively by b(x) and {bi(xi)}1≤i≤N the estimate, by any
decoding algorithm, of the joint probability distribution and
the marginal probability distributions, called the beliefs. The
ouput sequence x̂ that is the estimate of the input sequence in
the transmission channel is the most likely sequence given by:

x̂ = argmax
x

b(x)

The noisy transmission channel that we use in all of our
simulations is an additive white Gaussian noise channel whose
power is σ2. The observations Y = {y1, . . . , yN} we get at the
output of the channel enable the computation of the likelihoods
L(x) = {l1(x1) = p(y1|x1), . . . , lN (xN ) = p(yN |xN )}.

B. Belief Propagation

The BP is an iterative algorithm that consists in passing
messages between the variables and the constraints on the
edges of a given Tanner graph. An iteration k ≥ 1 of this
algorithm is classically done in two half iterations:

• for each edge eij , we compute the messages n
(k)
ji (xi)

from the the constraint Cj to the variable xi:

n
(k)
ji (0) =

1

2
+

1

2

∏
Xi′∈Nj\Xi

(
2m

(k−1)
i′j (0)− 1

)
(1)

n
(k)
ji (1) = 1− n

(k)
ji (0)

• for each edge eij , we compute the messages m
(k)
ij (xi)

from the variable xi to the constraint Cj :

m
(k)
ij (xi) =

li(xi)

Zij

∏
Cj′∈Ni\Cj

n
(k)
j′i (xi) (2)

where Zij is a normalization factor such that: m(k)
ij (0)+

m
(k)
ij (1) = 1,

To initialize the algorithm, we use the likelihoods:

∀eij , m
(0)
ij = li(xi) (3)

The beliefs on a variable xi are computed as the geometric
averages on the incoming messages:

b
(k)
i (xi) =

li(xi)

Zi

∏
j∈Ni

n
(k)
ji (xi) (4)

where Zi is a normalization factor such that: bi(0)+bi(1) = 1.

III. THE GENERALIZED BELIEF PROPAGATION

A. The region-graph construction

The region-graph R is a directed graph of depth D built
level by level. We decompose this construction in two steps.

The first step is the construction of the first level R0. The
principle is to gather the nodes of the Tanner graph in order
to absorb some harmful topological structures, as loops or
combinations of loops. These gatherings are the nodes of R0 if
and only if each check cj is included in at least one gathering
accompanied by its neighborhood Nj . We call a gathering a
region.

The second step is the construction of the next levels
R1, . . . ,RD−1. To build a level Rl we search for the inter-
sections between the regions of the previous level Rl−1. To
this end, we first define Cr the set of constraints and Xr the
set of variables that both form the region r. A set of variables
and checks r = Xr ∪Cr is a region of Rl if and only if there
is a set of n ≥ 2 regions {r1, . . . , rn} ∈ Rn

l−1 such that:
• ∀cj ∈ Cr, ∀rk ∈ {r1, . . . , rn}, cj ∈ Ck,
• ∀xi ∈ Xr, ∀rk ∈ {r1, . . . , rn}, xi ∈ Xk.

A region-graph of the Hamming code presented previously
is displayed on the figure 2. The nodes of the first level are
constructed considering only one check per region.

c0
x0, x1, x2, x4

c1
x0, x1, x3, x5

c2
x0, x2, x3, x6

x0, x1 x0, x2 x0, x3

x0

Fig. 2. A region-graph of the Hamming code

The efficiency of the GBP detailed below is fully de-
pendent on the region-graph that is built from the Tanner
graph. The construction of the first regions R0 determines
the performance of the algorithm. Therefore, it is relevant
to adapt the construction to the topology of the considered
Tanner graph. The difficulty is to find a construction that both
implies relevant performance and fair complexity. In the case
of the previous example where we consider only one check per
region of R0, the construction is easy to implement and the
complexity is low enough to compare it with other algorithms
though the performance are not improved enough or even
worse.

B. The message-passing algorithm

The region-graph is a Bayesian network whose probability
distribution can be computed by the following algorithm. The
principle of the GBP is to convey messages on the edges of
the region-graph where a message m

(k)
rq from a region r to

a region q is the a posteriori probability distribution of the
region q given by the region r at iteration k. An iteration of
the algorithm consists in the computation, or update, of all
the messages {m(k)

rq }r,q and the computation of all the beliefs
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{b(k)r }r and {b(k)i }i whose equations are detailed just below.
We denote by K the maximum value of k.

1) The update equations: The family Fr of a region r is
defined as the set of regions such that for any region q ⊆ Fr:

cj ∈ Cq ⇒ cj ∈ Cr

xi ∈ Xq ⇒ xi ∈ Xr

We define the descendants Dr of a region r as Fr\r. The
children Cr of r are the regions q of Dr such that there is an
edge from r to q. According to [8], [9] the equations of the
messages from a region r to a region q at iteration k are:

m(k)
rq (xq) =

∑
xr\q

Lr\q(xr\q)cr\q(xr)
∏

p⊂R\Fr
s⊂Fr\Fq

m(k−1)
ps (xs)

Zrq

∏
p⊂Dr\Fq

s⊂Dq

m(k)
ps (xs)

(5)
where:

• xr\q is the state of Xr\q = Xr\Xq ,
• Lr\q(xr\q) =

∏
xi⊂Xr\q

li(xi),
• cr\q(xr) =

∏
cj∈Cr\Cq

cj(xNj ),
• Zrq is a normalization factor to ensure that:∑

xq m
(k)
rq (xq) = 1.

For any region r at iteration k the beliefs are:

b(k)r (xr) =
1

Zr
Lr(xr)cr(xr)

∏
p⊂R\Fr

s⊂Fr

m(k)
ps (xs) (6)

where Zr is a normalization factor to ensure that∑
xr b

(k)
r (xr) = 1. To get the beliefs for the single variables

we only need to compute the marginal probability distributions
of the regions beliefs. Thus for any region r:

∀xi ∈ Xr, b
(k)
i (xi) =

1

Zi

∑
xr\i

b(k)r (xr) (7)

where Zi is a normalization factor to ensure that∑
xi
b
(k)
i (xi) = 1.

2) The relaxation coefficient: The update equations (5) can
be summarized into an implicit equation:

∀(r, q) ∈ R2 s.t. q ⊂ Cr, m(k)
rq = Frq

(
{m(k−1)

ps }p,s, {li}i
)

(8)
In the following, we lighten the notations by the use of Frq

alone. An important point for an iterative algorithm is the
convergence, that we define here as:

∀(r, q) ∈ R2 s.t. q ⊂ Cr, m(k+1)
rq = m(k)

rq

In [8] is introduced the fact that the GBP suffers from a poor
convergence. To circumvent this phenomenon is included a
decreasing term of relaxation wk such that:

m(k)
rq = wkFrq + (1− wk)m

(k−1)
rq (9)

The main issue is to find the most suitable function wk

which provides both convergence and relevant performance.
We propose three functions for wk that are displayed on the
figure 3.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

k

w
k

A

P

IP

Fig. 3. Relaxation coefficient : (A) affine, (P) parabolic, (IP) inverse parabolic

The balance between the memory m
(k−1)
rq and the update

Frq is different from case to case. In the case of a parabolic
function, the memory is quickly highlighted at the expense of
the update, whereas in the case of an inverse parabolic function
the memory is practically ignored for a long time. The affine
coefficient enables a progressive oversight of the update up to
a complete use of the memory.

On the figure 4 are displayed the bit-error-rates (BER) on
the Hamming code for the different relaxation coefficients. It
appears that the BER are not the same, which indicates that
the choice of wk is not trivial.

0 2 4 6

10−4

10−3

10−2

10−1

SNR

B
E

R

(a) Parabolic

0 2 4 6

10−4

10−3

10−2

10−1

SNR

B
E

R

(b) Affine

0 2 4 6

10−4

10−3

10−2

10−1

SNR

B
E

R

(c) Inverse parabolic

: w0 = 0.9

: w0 = 0.7
. : w0 = 0.5

+ : w0 = 0.3

− : w0 = 0.1

Fig. 4. Binary Error Rate on the Hamming code for different relaxation
coefficents

We observe that the inverse parabolic coefficient involves the
best performance whatever w0, unlike the affine coefficient or
the parabolic coefficient which is the worst one. Therefore,
we can assert that the best choice for wk is the inverse
parabolic one. Another idea would be to create a function
wk whose values are computed at each iteration k according
to the difference between the update and the memory, that
can be considered as an adaptative relaxation coefficient. Yet,
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the results are really poorer than what we can get from the
function proposed previously so we dropped this function.
Finally, extensive simulations let us conclude that the choice
of the relaxation coefficient is completely dependent on the
code we use in the transmission. Therefore, we need to test
different functions wk for each code to select the best one.

C. A novel construction

We present here a particular construction of the region-graph
for a given LDPC code. We consider the Tanner code [12] of
length N = 155 with M = 93 parity-check equations. The
Tanner graph of this code can be established by a sophisticated
concatenation of topological structures called Trapping-Sets
(TS). A TS(a,b) introduced in [4] and studied in [13] among
other, is a Tanner graph which contains a variables and b
unsatisfied parity-check equations. In the studied case the
TS(5, 3), whose Tanner graph is represented on the figure 5,
are sufficient to cover the whole Tanner graph of the code.

: variable

: constraint

: unsatisfied
constraint x0 x1

x2

x3 x4

c0

c1

c2 c3

c4

c5

c6

c7

c8

Fig. 5. TS(5, 3) : 5 variables and 3 unsatisfied constraints

Such a structure is known to damage the decoding [13]
because only the total null state enables to verify all the
parity-check equations. Thus to build the first level R0 of the
region-graph, it would be relevant to absorb them into regions.
However, the complexity of the message-passing would soar
because these regions are too large. Therefore, we had better
break these structures into several smaller regions as on figure
6 with:

• r = {Xr = {x0, x1, x3},Cr = {c0, c2, c6}},
• p = {Xp = {x1, x2, x3},Cp = {c1, c4, c7}},
• q = {Xq = {x1, x3, x4},Cq = {c3, c5, c8}}.

Xr, Cr Xp, Cp Xq , Cq

Xr∩p∩q , Cr∩p∩q

Fig. 6. Region-graph of the TS(5, 3)

D. Results

The region-graph of the TS(5, 3) is loopfree which makes
the decoding optimal. When we apply this construction to
all the TS(5, 3) of the whole code, unfortunately we do not
get a loopfree region-graph because all the variables belong

to several TS(5, 3). Nevertheless, the performance are still
relevant to make the GBP a good candidate for the decoding.
We present on the figures 7 the BER in terms of the iteration
of the GBP on the Tanner code for error events made by the
noisy channel that are truly harmful for the Belief Propagation
particularly because of the TS(5, 3).

0 20 40 60 80 100
0.04

0.06

0.08

0.1

k

B
E

R

w0 = 0.50

w0 = 1.00

(a) wk affine

0 20 40 60 80 100
0.04

0.16

0.28

0.4

0.52

0.64

k

B
E

R

w0 = 0.5

w0 = 1.0

BP

(b) wk constant

0 20 40 60 80 100
0.04

0.06

0.08

0.1
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E

R

n = 2

n = 4

n = 6

n = 8

(c) wk parabolic
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0.04

0.06

0.08

0.1

k
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R

n = 2

n = 4

n = 6

n = 8

(d) wk inverse parabolic

Fig. 7. BER of the BP and the GBP for different relaxation coefficients on
the Tanner code with the suited region-graph construction

On the figure (b) is displayed the BER of the BP which is
oscillating, making the decoding divergent and wrong. On
the same figure is displayed the BER of the GBP when the
memory is not taken into account. It clearly appears that
such an algorithm does not bring any improvement noticing
that it is often worse than the BP. When wk is set to 0.5
then the BER is dramatically reduced. On the figure (a) is
presented the fact that to keep a smooth evolution of the BER
with relevant values the relaxation coefficient must not imply
a total oversight at the first iteration. Extensive simulations
make us convinced that for the Tanner code, the initial value
w0 = 0.85 is the most relevant to get the best results, whatever
the relaxation coefficient decreasing rule. The most interesting
point is the comparison between figures (c) and (d) where n
is the order of the parabola and of the inverse parabola:

• parabolic: wk = w0

(
K−k
K

)n
• inverse parabolic: wk = w0

(
1− (

k
K

)n)

The relaxation coefficients have dual behaviors as it was
explained previously. This reveals that considering the update
rule for too many iterations damage the performance of the
GBP. Therefore it is more efficient to use this update for some
iterations at the beginning and quickly to foster the memory.
The parabolic relaxation coefficient offers the most accurate
estimate of the input sequence with the most stable evolution.

In the following of the article, we deeply study this last
assumptions to bring out the dynamics of the GBP with a
parabolic relaxation coefficient.
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IV. DYNAMICS

In this section, we expose some measures to evaluate the
dynamical behaviors of the GBP compared with the BP. To this
end, we first define the mathematical environment in which
these measures are relevant.

A. State space definition and properties

To compare the dynamics of the BP and GBP, we need to
define two state spaces that are similar. Using the fact that
both are message-passing algorithms, we should consider the
messages as the state variables. This choice fits perfectly with
the convergence conditions written in the previous section for
the GBP and written down here for the BP:

∀eij , n(k)
ji = n

(k−1)
ji (10)

The update equations of the BP can be implicitly noted:

∀eij , m
(k)
ij = fij

(
{n(k−1)

yx }(x,y), li
)

(11)

n
(k)
ji = gji

(
{m(k)

xy }(x,y)
)

(12)

The messages {n(k)
ji } are then computed by a composed

function g ◦ f that maps the messages {n(k−1)
ji } and the

likelihoods. Thus the BP can be described by a unic equation:

∀eij , n
(k)
ji = Gij({n(k−1)

nm }(m,n), {li}i) (13)

We consider respectively {Gij}(i,j) and {Frq}(r,q) as two
sets of iterated maps on the state variables {n(k)

ji }(i,j) and
{m(k)

rq }(r,q) which are called trajectories in the associated state
spaces, denoted EBP and EGBP , whose dimensions are the
number of messages to compute at each iteration. We denote
by U (k) = {n(k)

ji }(i,j) and by V (k) = {m(k)
rq }(r,q) the points

of the trajectories of the BP and the GBP at iteration k.

B. Parameters and scaling

In [14] the value of σ2, or the corresponding Signal to
Noise Ratio (SNR), is used as a parameter such that different
values imply different motions of the BP. However, most of
their simulations are done for particular noise realizations and
scaled on the SNR, that prevents from evaluating a statistical
behavior. A reason is that the noise realizations that lead
the BP not to converge or to converge to a wrong estimate
are rare events, essentially because the LDPC codes and the
iterative algorithms are created to this end. A way to have
some statistical evaluations of the behavior of the BP and the
GBP is the following:

1) find some of these noise realizations,
2) store the corresponding initializations on the state vari-

ables,
3) average the quantities to measure for a sufficient set of

initializations that are close in the state space in the sense
of the Euclidean distance.

By this way, we can target the guenine critical values. For
all the measures presented in the following of the paper, we
use this method to get statistical results which are relevant
enough to describe the behavior of the BP and the GBP. We

call critical values the SNR that correspond to a radical change
in the behavior of the motion of the algorithms, which are the
bifurcations.

C. Bifurcation diagram

A relevant method to extract the critical values of the SNR
is the bifurcation diagram computation. For a given noise
realization, it consists in evaluating the value of a function
E that is computed from the state variables at their steady
state for J different values of the SNR. We get a sequence
[Eσ1

, . . . , EσJ
] that represents the behavior of the dynamic

system in terms of the SNR.
We consider the following function exposed in [14] called

the mean square beliefs:

∀σ, Eσ =

√√√√ 1

N

N−1∑
i=0

b2i (0) (14)

where the input sequence in the channel is the null sequence
and the beliefs are computed at the last iteration K of the
considered algorithm, BP or GBP. Obviously, there is no rea-
son that the associated dynamic system has reached any steady
state at this iteration but we need to suppose it for computation
time’s sake. This function presents three important values:

• Eσ = 1: all the beliefs indicate that the ouput sequence
is the null sequence which is a good decoding,

• Eσ = 1
4 : all the beliefs are uniform distributions thus

there is no information about the true state of the trans-
mitted bits, which is a missed decoding,

• Eσ = 0: all the beliefs indicate that the output sequence
is the complementary of the sent sequence, which is a
completely wrong decoding.

The display of [Eσ1
, . . . , EσJ

] enables to know two properties
of the used algorithm: the amplitudes provides information
about the decoding performance, and the variation between
successive values gives us the critical values of the SNR. We
display on the figure 8 the mean bifurcation diagrams of the
BP and the GBP for a given noise realization computed as we
exposed at the beginning of the current subsection.

2 2.5 3
0.8

0.9

1

SNR

E
σ

2 2.5 3
0.8

0.9

1

SNR

E
σ

Fig. 8. Bifurcation diagrams of the BP and the GBP

We observe that for SNRs lower than 2.19 dB, the BP
follows a regular increasing steady motion. Such a behavior
is analoguous to that of the GBP except that the critical value
is 2.07 dB. When the SNR is greater than these two critical
values, the algorithms follow two distinct motions. The BP
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seems to oscillate while the SNR is lower than 2.49 dB, for
values in [2.5 dB, 2.98 dB] however it does not appear any
known evolution which is an indication of chaos. Concerning
the GBP, it appears globally three intervals: in [2.08 dB, 2.43
dB] the shape of Eσ indicates some irregular oscillations
whereas for SNRs in [2.44 dB,2.69 dB] we cannot assert
anything except that the chaos would appear. From 2.70 dB
up to 3.02 dB, the GBP tends to the right decoding state
whereas the BP does not present this behavior before 2.99
dB. Moreover the shapes of the two whole signals indicate
that the GBP function Eσ is globally beyond the BP one, that
shows that the GBP tends faster than the BP to the right state.

D. Reduced trajectory

Another use of the mean square beliefs function is the
representation of the trajectory in a 3-dimensional state space.
To this end, we use the phase space reconstruction introduced
in [15]. The method is first to compute this function at each
iteration to get the following sequence Eσ = [Eσ(k)]0≤k≤K .
Afterthat we share this one dimensional sequence in a three
dimensional sequence as follows:

Ẽσ =

⎡
⎢⎣

Eσ(0) Eσ(1) Eσ(2)
...

...
...

Eσ(K − 2) Eσ(K − 1) Eσ(K)

⎤
⎥⎦ (15)

On the figures 9 and 10 are displayed some reduced trajectories
of the BP for typical values of the SNR deduced from the
previous bifurcation diagram. It appears for the BP four
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Fig. 9. Reduced trajectory for the BP on the Tanner code with SNR = 2.15
dB and 2.30 dB
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Fig. 10. Reduced trajectory for the BP on the Tanner code with SNR = 2.70
dB and 3.00 dB

typical behaviors that match with the four intervals exposed in
the previous paragraph. We obtain a very small sized attractor
for SNR = 2.10 dB that can be considered as a fixed point,

whereas the reduced trajectory transforms to a limit cycle
when the SNR is between 2.19 dB and 2.49 dB. A crucial
point is that the thickness of the trajectory along this limit
cycle increases as the SNR is getting greater up to 2.50 dB.
At the same time this limit cycle interleaves with other limit
cycles, that can be understood as a sequence of period doubling
bifurcations in terms of dynamic system, as is displayed on
the figure 11 with two interleft cycles. Such a phenomenon is
a typical route to chaos, that is observable from 2.51 dB. A
chaotic motion means that there is not any periodic motion or
fixed point convergence anymore, as it is displayed for 2.70
dB. When the SNR reaches 2.99 dB the trajectory collapses
to a single point that is a true fixed point.
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Fig. 11. Reduced trajectory for the BP on the Tanner code with SNR = 2.40
dB

Concerning the GBP, whose reduced trajectories are dis-
played on the figures 12 and 13, we cannot share the SNR
values so accurately because the reduced trajectory does not
transform blatantly. However, the reduced trajectory makes
reveal also four different behaviors that follow the same order
than that of the BP: small attractor, limit cycle, chaos, fixed
point. The corresponding SNR intervals match with what have
been revealed previously.
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Fig. 12. Reduced trajectory for the GBP on the Tanner code with
SNR = 2.00 dB and 2.20 dB
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Fig. 13. Reduced trajectory for the GBP on the Tanner code with
SNR = 2.80 dB and 3.00 dB
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We have to be cautious because Ẽσ is not a true trajectory,
it does not respect the Cauchy-Lipschitz condition [15] due to
the non bijection between the messages and the beliefs. Thus,
this sequence only has the role of giving clues about the true
behavior of the considered algorithm as the possible shape of
the actual trajectory in EBP or EGBP that are: convergence
to a fixed point, convergence to a limit cycle, convergence
to a chaotic attractor. To distinguish these shapes, we need a
criterion that reflects the behavior by its own value. A good
candidate is the Lyapunov exponent.

E. Lyapunov exponents

A common measure is the Lyapunov exponent λ [16], [15],
[17]. Its computation consists in evaluating at each iteration
k ≤ K the Euclidean distance dk between two initially close
trajectories, and computing the log-ratio:

λ = ln
dK
d0

(16)

The sign of the Lyapunov exponent λ reveals the behavior
of the system around the corresponding initialization of the
trajectories.

• if λ is positive then the trajectories have moved away
one from the other, which is an evidence of a chaotic
behavior,

• if λ is negative then the trajectories have got closer, which
is an evidence of a convergent behavior to a small sized
volume of the state space. This volume is reduced to a
fixed point if and only if λ → ∞.

When λ crosses the x-axis the system suffers from a bifurca-
tion meaning that the algorithm has changed of motion. The
corresponding SNR are the critical values. We display on the
figure 14 the Lyapunov exponents of the BP and the GBP on
the Tanner code.
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1.6 2 2.4 2.8 3.2
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0.008

0.012
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Fig. 14. Lyapunov exponents of the BP and GBP on the Tanner scaled on
the SNR

As we have observed on the bifurcation diagrams, the evo-
lutions are really different as soon as the SNR is greater
than 2.07 dB. The BP curves is perfectly consistent with the
associated bifurcation diagram in the sense that the critical
values we extract are the same and the behaviors we could
imagine by the bifurcation diagram are also revealed by the
Lyapunov exponent. Concerning the GBP, we observe that
the Lyapunov exponent does not follow blatantly different
motions as we noticed about the reduced trajectory. Moreover,
it reaches greater values than the BP, which is not in its favour.

However, a crucial point is that the SNR that corresponds to
the fall of the Lyapunov exponent is clearly lower for the GBP
than for the BP. In association with the results about the error
correction power in the previous section, it appears that from
this SNR of 2.88 dB the GBP presents a stable evolution and
better skills to correct the errors on the transmitted bits.

A relevant analyze we need to effect is the comparison with
the reduced trajectory we exposed previously so as to associate
accurately with each reduced motion a particular evolution of
λ. Here are these associations for the BP:

• SNR ∈ [0dB; 2.19db]: the reduced trajectory converges to
a very small sized volume of EBP that we can consider
as a fixed point whereas λ is close to the null value,

• SNR ∈ [2.20db; 2.49db]: the reduced trajectory is trapped
into a limit cycle whereas λ has gone over a stair,

• SNR ∈ [2.50db; 2.98db]: the reduced trajectory does not
converge to any fixed point, limit cycle or quasi-limit
cycle but to a chaotic attractor whereas λ soars to high
values,

• SNR ∈ [2.99db; +∞db]: the reduced trajectory converges
to a fixed point corresponding to a good decoding.

As we mentionned previously, the GBP does not present
behaviors that are easy to distinguish therefore it would not
be relevant to associate any possible critical value between the
bifurcation diagram, the reduced trajectory and the Lyapunov
exponent.

F. Hyperspheres method

We propose here a novel method to evaluate the unstability
of the BP and the GBP, based on their own trajectory in EBP

and EGBP . This method is complementary to the Lyapunov
exponent measure because it reveals the size of the attractor
that the trajectory falls into and some other properties about
the limit cycles.

This method consists in computing the rays Rk of the
hyperspheres circumscribe to the trajectory inside a given
temporal window centered around each point U (k) (or V (k))
of the trajectory. On the figures 15 and 16 are displayed the
evolution of two rays that correspond to two initially close
trajectories in the Euclidean sense. The motion we observe

0 500 1,000
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0.05

0.1

k

R
k

0 500 1,000

0.08

0.1

0.12

k

R
k

Fig. 15. Evolution of two hyperspheres rays corresponding to two initially
close trajectories of the BP on the Tanner code at SNR = 2.10 dB,
SNR = 2.30 dB

for SNR = 2.30 dB is consistent with the limit cycle we
observed on the reduced trajectory. The curve of the ray enable
to estimate the period of the trajectory around 23 iterations.
Moreover we can assert that this limit cycle is stable because
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Fig. 16. Evolution of two hyperspheres rays corresponding to two initially
close trajectories of the BP on the Tanner code at SNR = 2.70 dB, SNR
= 3.00 dB

the two rays cannot be distinguished. For 2.70 dB the rays
moved away one from the other as it was predicted by the
Lyapunov exponent observations. More accurately we can see
that the rays has different oscillations step. This is due to the
period doubling bifurcations explained previously. During 92
iterations in average for k ≤ 500, the trajectory is trapped in
a given limit cycle and for the next 92 iterations the trajectory
falls into another limit cycle of different ray. For both it is
possible to measure the period or pseudo-period that is the
same as the period of the first limit cycle, that is 23 iterations.
For k ≥ 500 we cannot really distinguish these different
phases of evolution because the period doubling has led to
the chaos. Such an observation makes our method relevant to
bring out crucial information by a one dimensional function.
Another important aspect of the hyperspheres method is the
raising of the behaviors difference between two initially close
trajectories: we easily observe that the evolution of the rays
cannot be distinguished while k ≤ 200 but as k is getting
greater, the evolution of the rays move away one from the
other but they follow the same kind of motion. For both of
them the hypervolumes of the state space in which they are
locking in are quite of the same size. When the SNR reaches
the last critical value we observe that one of the rays decreases
to the null value because the BP has converged to a fixed point.
The other ray has not collapsed yet because the SNR is just
at the critical value, if it was increased a little we would see
the two rays going to zero.
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Fig. 17. Evolution of two hyperspheres rays corresponding to two initially
close trajectories of the GBP on the Tanner code at SNR = 2.70 dB, SNR
= 3.00 dB

Concerning the GBP, for low SNR values we did not display
the evolutions of Rk because it follows the same shape as the
BP one. On the figure 17, at SNR = 2.70 dB we observe
that the rays of the couple of trajectories are quite smaller

than that of the BP. It appears that the maximum value of
the rays is still lower than the minimum value of the BP ray.
The comparison between both rays on the GBP enables to
deduce that even though each trajectory eventually reaches a
particular attractor of the state space, their size are not very
different and they collapse at the end, which is not true about
the BP, making the GBP more stable than the BP for the suited
construction we have proposed.

V. CONCLUSION

In this paper, we have presented a novel method of construc-
tion of the region-graph for the GBP algorithm. The results
have shown firstly that the error correction power was im-
proved compared with the BP one, and secondly that the GBP
was more stable than the BP. The measure of the hyperspheres
we have introduced enable to bring out this property and also
the fact that the GBP converges towards small sized attractors
contrary to the BP. Finally, this work leads to conclude that
a suited region-graph construction enables the GBP to be a
good candidate to surpass the famous BP. In future works,
we propose to find a mathematical criterion to evaluate the
relevancy of any region-graph according to the associated
GBP performance, and also we propose other handlings of
the TS(5, 3) to build region-graphs that could present better
correction power and improved stability.
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