

 Abstract—This paper is on the general discussion of memory
consistency model like Strict Consistency, Sequential Consistency,
Processor Consistency, Weak Consistency etc. Then the techniques
for implementing distributed shared memory Systems and
Synchronization Primitives in Software Distributed Shared Memory
Systems are discussed. The analysis involves the performance
measurement of the protocol concerned that is Multiple Writer
Protocol. Each protocol has pros and cons. So, the problems that are
associated with each protocol is discussed and other related things
are explored.

 Keywords—Distributed System, Single owner protocol, Multiple
owner protocol

I. INTRODUCTION
distributed system is an application that executes a
collection of protocols to coordinate the actions of

multiple processes on a network, such that all components
cooperate together to perform a single or small set of related
tasks.

II. MEMORY CONSISTENCY MODEL
A memory consistency model is a contract between

programmers and shared memory which specifies how the
memory operations of a program will be executed. Computer
scientists have proposed different memory models to enhance
distributed shared memory systems. In this section, we will
give an introduction to those memory models and some
terminology used in this paper.

A. Strict Consistency
Strict consistency is the most stringent memory model. It

requires any read operation to a memory location to return the
latest write. This definition uses a global time to define what a
read operation can get from the memory. This model mimics
the memory behavior in a single processor.

Dalvinder Singh Dhaliwal is working with Computer Science &
Engineering Department, RIMIT Institute of Engineering & Technology,
Mandi Gobindgarh (Punjab), India

Parvinder S. Sandhu is Professor with Computer Science &
Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 India
(Phone: +91-98555-32004; e-mail: parvinder.sandhu@gmail.com).

S. N. Panda is is working as Principal at Regional Institute of Management
and Technology, Mandi Gobindgarh (Punjab), India

.

B. Sequential Consistency
A global clock is hard to capture in a distributed system.

Each processor in the distributed system may have its own
local clock with a different view of time. The idea of recent
time can be inconsistent in the system. proposed another
model, called sequential consistency, to extend the idea of the
strict consistency model.

C. Processor Consistency
Processor consistency [6],[8] was proposed to relax the

program order constraints in the case of a write followed by a
read operation to a different location. It allows the read
operation to bypass the write before the write is serialized or
made visible to other processors [1].

D. Weak Consistency
One family of relaxed memory models requires

programmers to distinguish between data and synchronization
operations. Accesses to synchronization variables are strongly
ordered (for example, totally ordered), but data accesses
follow a weaker order. Weak consistency was the first hybrid
memory model proposed by [5], [7].

E. Release Consistency
Release consistency [6] is an extension of weak

consistency. Release consistency classifies operations on
shared memory into two categories, special and ordinary.
Special operations also are classified into sync and nsync.
Sync operations are either release operations or acquire
operations. Ordinary operations refer to data accesses without
conflicting with other operations. Sync accesses are used to
order data accesses such that data operations may not conflict
with each other. Nsync accesses are asynchronous data
accesses. Release is a write synchronization operation.
Acquire is a read synchronization operation.

F. Lazy Release Consistency.
Even though the conventional release consistency allows

ordinary accesses to be postponed until a release operation is
executed, it still requires all ordinary accesses to be performed
with respect to all processes. [9],[10] proposed the lazy
release consistency which allows ordinary accesses to be
performed with respect to some processes. (Because the lazy
release consistency was implemented as a software distributed
shared memory system, the term of process is used instead of
processor.)

Consistency Model and Synchronization
Primitives in SDSMS

Dalvinder Singh Dhaliwal, Parvinder S. Sandhu, and S. N. Panda

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:2, 2009

293International Scholarly and Scientific Research & Innovation 3(2) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

2,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

61
2/

pd
f

G. Message-Driven Relaxed Consistency
In order to exploit both the message passing model and the

shared memory model, [11] proposed message-driven relaxed
consistency that combines those two mechanisms into a single
system. Messages carrying explicit causality annotations are
exchanged to trigger memory coherence actions. In addition to
shared memory, message passing is another mechanism
provided by the system to exchange information among
processes. Specifically, if a process sends a synchronization
message to another process, the modifications in shared
memory the sending process made are visible to the receiving
process after the receiving process gets the message. If all
messages are synchronization messages, the ordering of
memory events is consist with the happened before" relation,
as defined by [12].

III. SUMMARY
 The figure below represents the consistency model.

Fig. 1 Summary of consistency model

IV. RELATED TECHNIQUES FOR IMPLEMENTING DSM SYSTEM
In this section, brief introduction to the implementation

techniques of software distributed shared memory systems are
given. In the Fig. 2 shown below the term SWP represents
single writer protocol & another term MWP stands for
multiple writer protocol.

A. Single Owner Writer Protocol
It uses the page-based mechanism to implement a software

distributed shared memory system called IVY

 SWP MWP

 DSM

Fig. 2 DSM partition

 i. IVY: It implements sequential consistency, Only one
process is allowed to write the page at any point in the
execution. This simply means that while all processes can read
the same page but only one process can write During that
write operation, the local cache of that process is set to read-
write mode (if the writer does not get current version of the
page, it gets the same (by invalidates all the existing copies of
the page in all processes) from another process before it
writes.

Concluding above, To write, all the other processes are set
to be in OFF state.

 B. Multiple Writer Protocol
 To minimize the size of the problem, we opt MWP (as in
SWP, the size of the response is equal to the size of the
physical page in memory).It uses MWP release consistency.
An ordinary write operation is performed by sending the final
values of the variables to all the processes. The variables are
cached before the release operation is performed.

In MWP, let us suppose we have two processes called ’p’ &
‘q’. further suppose if p releases the control it passes over the
changes to process q, and when q releases the operation, it
gives the changes to p. Finally ,the caches of the pages
become identical.

 C. Diff
 The change in the page before the release is called the diff
of the page. Diff consists of two attributes, i.e, addresses of a
particular change to be made and values that will actually
make change happen.

Result: So when two processes wish to write the same page,
then only the diff of the page is set, rather than the whole
page as done in SWP. Thus page size or request size reduces.

V. LAZY INVALIDATE PROTOCOL
All ordinary accesses to be performed w.r.t. all processes

even though some processes do not access those variables.
Tread mark proposed LIP.

The conventional release consistency requires all ordinary
accesses to be performed with respect to all processes even
though some processes do not even access those variables.
Tread Marks [9],[14] proposed lazy release consistency and
its implementation, called lazy invalidate protocol .The
execution of an application in the lazy release consistency is
partitioned into intervals. The intervals of different processes
are partially ordered:

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:2, 2009

294International Scholarly and Scientific Research & Innovation 3(2) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

2,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

61
2/

pd
f

i. Intervals in a single process are totally ordered by its
program order.
ii. An interval of process p precedes an interval of process q
if the interval of q begins with the acquire operation
corresponding to the release operation that concluded the
interval of p.
The lazy invalidation protocol is also a multiple writer

protocol. It invalidates the caches of the shared memory
according to write notices. A write notice is created for a
written page by the writer when the process executes a release
operation. Each write notice lists the information about the
page number and the specific interval when the page was
modified. There is a diff associated with each write notice.
The diff keeps the changes of the page which the process
writes since the local copy of the page in the process is made
valid [15]. A process performs an acquire operation on a
variable by sending an acquire request to the last process
which performed a release operation on the variable. The
releasing process responds to the acquiring process with a set
of write notices. These write notices were created in the
intervals preceding the acquiring process's new interval .The
acquiring process invalidates its local copy of a page if there
is a write notice for that page and the write notice was not
used to invalidate the page before. When the process attempts
to access an invalid cache, it first checks whether it has kept
all the diffs corresponding to the write notices which
invalidated the cache. If not, the process sends messages to
some of the processes which created the write notices. The
reason why it need not send messages to all of the processes
can be shown from the following example. The interval when
a write notice is created by process p may precede the interval
of another write notice created by process q. Process q must
keep process p's diff because process q needs p's diff to make
the local cache valid before process q can write to it. The
process subsequently accessing the page needs only to send a
requesting message to the last writer process, process q. After
the accessing process receives all the responses, the accessing
process applies the diffs to the cache in the partial order. Then
the computation resumes. All the processes keep these write
notices and diffs locally until garbage collection is performed.

VI. PROBLEMS WITH MWP
A large number of invalidate inconsistent copies of a page

exist in the system as shown in Fig. 3.

Fig. 3 Problems with MWP

VII. SYNCHRONIZATION PRIMITIVES IN SOFTWARE
DISTRIBUTED SHARED MEMORY SYSTEM

A. Locks
Munin,[4] uses the probable owner mechanism to

implement locks. Each process maintains its observations
about which process might own the lock. If the lock is not
available locally, a requesting message is sent to the probable
owner. If the probable owner does not have the lock, the
probable owner forwards the requesting message to its
probable owner. The message is passed along the probable
owner chain to the last lock holder. If the lock is free, the last
lock holder gives the lock to the requesting process and sets
its observation of the probable owner to the requesting
process. Tread Marks uses a distributed queue to implement a
lock. Each lock has a specific manager which knows the most
recent process, p, requesting the lock. A global waiting queue
is maintained. When the manager receives a lock request from
a process, q, it forwards this request to p. The manager also
sets the most recent process to q. p passes the lock and
invalidation information to q when p releases the lock.

B. Poor Application Programming Interfaces for Solving

Synchronization Problems
The synchronization operations of release consistency are

restricted to release and acquire, which are write and read
operations on shared memory. The overhead of the strong
memory consistency is not only high at run time in NOW but
it is hard to program using just release and acquire. Instead of
implementing a strong memory consistency model, most of
contemporary software distributed shared memory systems
offer higher level synchronization primitives, such as locks
and barriers, and implement them by synchronization
managers. In order to conform with the definition of release
consistency, the developers of distributed shared memory
systems usually need to spend some effort in associating locks
and barriers with release and acquire operations. For example,
getting a lock is an acquire operation and returning a lock is a
release operation [10]. However, interpreting a barrier is not
as intuitive as a lock. Therefore, using the notions of release
and acquire to describe synchronization accesses is
problematic. Moreover, the complexity of using these basic
synchronization operations of locks and barriers to solve some
synchronization problems is known to be quite complicated
for programmers and prone to errors. This is a classic
discussion appearing in many operating system text books, for
example [13] .

 C. Weaknesses of Multiple Writer Protocol
 Write shared process and lazy invalidate protocols of tread
marks are called multiple owner protocols. In those, a reader
needs to contact some writers that own a piece of current
data.

Problems with MOP
• Large number of diffs to maintain consistency of a

page which is written by some processes and read by
some others.

• Diff accumulation

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:2, 2009

295International Scholarly and Scientific Research & Innovation 3(2) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

2,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

61
2/

pd
f

• Garbage collection: It is performed by stopping
execution of all processes and making active pages
current in each process.

 D. Performance Issue
 The papers [3],[4] identify a class of applications that do not
perform well on some distributed shared memory systems. For
example, a parallel version of the travelling salesperson
problem uses a branch-and-bound algorithm to find the
shortest path. The algorithm uses a priority queue to store
incomplete paths. The priority queue is protected by a lock.
As stated in [3] the major source of overhead for these DSM
versions was the amount of times spent waiting on the lock
protecting the work queues. These lock waiting times are large
because the DSM versions must ship the work queue, a
sizable data structure, to the acquiring process before that
process can perform any operation on the work queue."

A function shipping mechanism was proposed by [3] such
that the priority queue remains attached to a specific process.
Accesses to the priority queue by other processes are
performed by remote procedure calls. However, there was no
systematic way to incorporate such features into their system.
Message-driven relaxed consistency can implement the RPC-
server for the priority queue without too much overhead by
creating a process which receives requests from other
processes in the form of messages. However, this approach
inherits the disadvantages of the message passing models,
which are difficult for users to program.

REFERENCES

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A
tutorial. Technical report, Rice University ECE, 1995.

[2] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R.
Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H.
Simon, V. Venkatakrishnan, and S. Weeratunga. the NAS parallel
benchmarks. Technical Report RNR-94-007, NASA, 1994.

[3] J. B. Carter. Efficient Distributed Shared Memory Based on Multi-
Protocol Release Consistency. PhD thesis, Rice University, 1993.

[4] J. B. Carter. Design of the Munin distributed shared memory system.
Journal of Parallel and Distributed Computing on Distributed Shared
Memory, 1995.

[5] M. Dubois and C. Scheurich. Memory access dependencies in shared-
memory multiprocessors. IEEE Transaction on Software Engineering,
June 1990.

[6] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J.
Hennessy. Memory consistency and event ordering in scalable shared-
memory multiprocessors. In the Proceedings of the 17th Annual
International Symposium on Computer Architecture, 1990

[7] M. Dubois, C. Scheurich, and F. A. Briggs. Memory access buffering in
multiprocessors. In Proceeding of 13th Annual International Symposium
on Computer Architecture, 1986.

[8] J.R. Goodman. Cache consistency and sequential consistency. Technical
Report 61, SCI Committee, 1989.

[9] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for
software distributed shared memory. In the 19th Annual International
Symposium on Computer Architecture, 1992.

[10] P. Keleher. Lazy Release Consistency for Distributed Shared Memory.
PhD thesis, Rice University, January 1995.

[11] P.T.Koch, R. J. Fowler, and E. Jul. Message-driven relaxed consistency
in a software distributed shared memory. In Proceedings of the First
USENIX Symposium on Operating Systems Design and
Implementation, 1994.

[12] L.Lamport. How to make a multiprocessor computer that correctly
executes multi process programs. IEEE Transactions on Computers,
28(9):690{691, November 1979.

[13] A. S. Tanenbaum. Modern Operating Systems, chapter 2. Prentice Hall,
1992.

[14] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Raja-mony,
W. Yu, and W. Zwaenepoel. TreadMarks: Shared memory computing on
networks of workstations. IEEE Computer

[15] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Tread-
Marks: Distributed shared memory on standard workstations and
operating systems. In the 1994 Winter USENIX Conference, 1994.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:2, 2009

296International Scholarly and Scientific Research & Innovation 3(2) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

2,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

61
2/

pd
f

