

Abstract—One of the common problems encountered in software

engineering is addressing and responding to the changing nature of
requirements. While several approaches have been devised to address
this issue, ranging from instilling resistance to changing requirements
in order to mitigate impact to project schedules, to developing an
agile mindset towards requirements, the approach discussed in this
paper is one of conceptualizing the delta in requirement and
modeling it, in order to plan a response to it. To provide some
context here, change is first formally identified and categorized as
either formal change or informal change. While agile methodology
facilitates informal change, the approach discussed in this paper
seeks to develop the idea of facilitating formal change. To collect,
document meta-requirements that represent the phenomena of change
would be a pro-active measure towards building a realistic cognition
of the requirements entity that can further be harnessed in the
software engineering process.

Keywords—Change Management, Agile methodology, Meta-
requirements

I. INTRODUCTION
HE practice of requirements engineering [1,5], usually
occurs in a silo, at the beginning of the software

development lifecycle, with the objective of eliciting,
representing and validating requirements for the software
development endeavor. The emphasis, during the
requirements engineering phase is on “what” needs to be
coded into software as opposed to “how” and thus
requirements engineering is undertaken to outline the context
within which software engineering should be performed. The
end of the requirements engineering phase is often interpreted
as the “freeze” point for any significant changes to the
existing body of requirements. Agile software development
methodology[2] is an approach that has been identified to
work around the “freeze” mindset and this methodology
engenders reactivity to changes as opposed to resistance,
which makes traditional, conservative, software development
practitioners skeptic of its viability and more importantly
reliability.

Requirements are increasingly recognized as having the
characteristic of being mercurial in nature and as requirements
change, there is a need for creating software development
processes that recognize the changing nature of requirements
and integrate change as a concept within the software process
model. There are two types of change – formal change and

Gouri Prakash is with the Business Risk Infrastructure Department at

HSBC USA 93901 (Phone: 412-512-6743; fax: 831-754-4031; e-mail:
gouriprakash@ live.com).

informal change. Formal change requires support by a
structured process in order to facilitate the change whereas
informal change requires a mindset that accepts and adapts to
the change, without having the need to spend significant
amount of resources on justifying the nature of the change and
documenting it in detail for implementation purposes. Agile
methodologies like Scrum, XP [6,7] have been created such
that these recognize informal changes as a best practice which
also contributes to making the software development endeavor
more customer-centric. However in non-technology firms, the
emphasis is on implementing changes to requirements in a
more formal, well-documented manner, in an effort to
increase code portability and maintainability during the
lifecycle of the software product. Software coding conducted
in non-technology firms is performed for building systems
that can be supported and maintained by a changing body of
personnel, hence the need for supporting formal changes, in
order to mitigate the risk of loss of knowledge and
information. Employing agile practices to facilitate change
is an adaptive approach towards software engineering and one
way of addressing changing requirements. This paper aims at
propose an alternative approach towards addressing changing
requirements and that is to formulate meta-requirements
during the requirements engineering phase, that model and
communicate the phenomena of change and the impact it has
on the software development lifecycle. Before entitizing
change let us look at what we mean by meta-requirements.

 Meta-requirements refer to data that further describes the
attributes of a requirement, giving more information about the
requirement which can be significant for the software
development effort. Active formulation of meta-requirements
when initiated during the requirements engineering phase and
integrated into the software engineering process, leads to the
provisioning of information about requirements which
enmeshes the practice of requirements engineering with the
other phases of the software development lifecycle as opposed
to being isolated to a silo of the software engineering process.
Meta-requirements creation entails gathering and provisioning
of relevant information about requirements which can
potentially be of use in all phases of the software development
lifecycle. For the purpose of this paper, the focus is on meta-
requirements that model the attributes of change as well as
concepts pertinent to it in order to facilitate and develop a
realistic cognition of the requirements entity.

Meta-requirements that Model Change
Gouri Prakash

T

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:4, No:4, 2010

355International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
co

no
m

ic
s

an
d

M
an

ag
em

en
t E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

53
3.

pd
f

II. META-REQUIREMENTS

A. Empirical results validating status quo
 Are meta-requirements collated in contemporary software
development projects and if so what are these meta-
requirements? The empirical validation was performed for a
small sample of software projects conducted between the year
2006 and 2007 at an investment bank. Based on data collected
from 8 different software development engineering projects, it
was determined that meta-requirements were collected and
even represented in the requirements engineering phase,
however the data collected was not explicitly recognized as
meta-requirements and was collected more in the line of
following standard, repeatable practices. Furthermore, it was
uncovered that the meta-requirements gathered for the
projects were not actively referred to or used in other phases
of the software development project.
 The following lists the set of meta-requirements that were
common across all 8 projects and were part of the
requirements representation effort:

• Requirement Owner: The requestor of the
requirement, representing the person who had a stake
in requirement implementation.

• Requirement Submission Date: The date on which
the requirement was created and submitted to or
handed over to the software project manager.

• Requirement Expected Implementation Date: A
date communicated to the requestor of the
requirement as the date on which the requirement
would be realized by the system. This attribute
therefore indicated the expected implementation date
of the requirement.

• Requirement Version: The version of the
requirement, indicating the number of revisions the
requirement has undergone to reach its current form
of definition.

• Requirement Impact: Impact, specific to the domain
of requirement implementation, and qualitatively
described in terms of the impact on the stakeholders
of the software development projects. These
stakeholders were also the requestors of the
requirement and were tasked with building a case for
it.

• Requirement Criticality: Criticality ranked certain
requirements as being of relatively higher importance
than other requirements and was a culmination of
relative and subjective evaluation of the requirement
itself – an input that was actively sought by the
software development team, from the requestors of
the requirement.

• Risk of not implementing the requirement: The risk
of not implementing the requirement was in some

cases articulated in terms of financial losses and in
others was expressed as a qualitative assessment of
the adverse impact to the business if the requirement
was not implemented.

The above indicates that the meta-requirements collected
focused primarily on the time dimension and the significance
dimension of their respective software engineering projects.
The dates and version type of requirements indicate the
progression of requirements over a period of time while the
other meta-requirements emphasize the need for implementing
the requirement. Based on empirical analysis of software
projects, the meta-requirements collected are not explicitly
recognized as meta-requirements and more importantly in
their current representation restricted to usage in the
requirements engineering phase and to some extent used in the
software validation phase of the software development
lifecycle.

The objective of creating meta-requirements, which models
the phenomena of change, is to realistically represent
requirements and more importantly set the expectations of the
software development team about the requirements entity.
Modeling the phenomena of change as meta-requirements
isolates the representation of change as a by-product of
requirement definition and keeps the focus on change separate
from the actual requirement. Entitizing change, discovering
and defining the attributes of change, thereby modeling it for
the benefit of harnessing it for representation in the
requirements engineering phase as meta-requirements, creates
a degree of acceptance towards change.

B. Modeling change
What attributes of changing requirements can meta-

requirements model and represent and how would these
attributes be useful in the overall software development
process? To understand in greater detail, let us look at the
change in requirements from a conceptual standpoint. Let
there be a requirement r that has been identified and defined
for a software development project. In the requirements
engineering phase, we are seeking to model a possible change
to r – let us call this change as ∆r. We now know that at a
given instant of time t, there exists a probability that the
requirement r will change states and assume the state of r +
∆r. Let us denote this new state with r’. Fig 1 below indicates
the two states a requirement can go into, which is persist the
same state as indicated by r or change to a new state indicated
by r’. Furthermore, the probability that a requirement will
persist the state r is given by p and the probability that r will
change to r’ is given by 1-p.

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:4, No:4, 2010

356International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
co

no
m

ic
s

an
d

M
an

ag
em

en
t E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

53
3.

pd
f

 Supposing it is known that multiple changes to the
requirement are possible, then the individual probabilities
associated with each of the possible changes can be used to
compute the combined probability that a change to the
requirement can occur. The change to the requirement can be
documented into the requirement change matrix as shown
below. The four columns of the requirement change matrix,
lists all the requirements of a sample project along with the
probability that a change will occur. Furthermore the impact
of change is identified and is assigned a positive or a negative
connotation. Certain changes to requirements, such as
removing the requirement altogether can actually be viewed as
having a positive impact on the project. The final column
documents whether the change occurred. Note that the
assumption here is that the change in each requirment itself is
atomic and not composite – implying that either all aspects of
the change will occur or not occur and hence the expected
change itself is well-defined.

TABLE I
REQUIREMENT CHANGE MATRIX

Requirement
(R)

Probability of
Delta(∆RN)

Impact of
change

Change Occur?

R1 - ∆R1 0.7 + Y
R2 - ∆ R2 0.1 - N
R3- ∆ R3 0.6 + N
R4 - ∆ R4 0.2 + N
R5-∆ R5 0 - N
R6-∆ R6 0.5 - Y
R7-∆ R7 0.3 - N

Instead of viewing change solely as a project risk with

negative connotations, change needs to be acknowledged as
an event that can occur after the requirements have been
baselined, resulting in potentially multiple implications for the
software engineering endeavor itself – especially in terms of
schedule and budget, and these implications indicate whether
the change is a risk or an opportunity, negative or positive.

III. ROLE OF CHANGE MODELER
The objective of collecting meta-requirements is to

realistically address requirements and more importantly
capture the realistic nature of requirements in a way that is
useful and suitable for all members of the software

development endeavor. SPL v5 framework [3], in defining the
practice area of requirements engineering, recognizes the three
roles that are needed in arriving at the requirements
specification – the user, the developer and the requirements
engineer [4]. The user is the requestor of the requirement, the
developer is the software engineer who will create software
that will implement the requirements and the requirements
engineer will engage in activities related to requirements
elicitation and specification. To arrive at the meta-
requirements that model change in requirements is a task that
can be undertaken by the requirements engineer or can be
performed by a separate, independent role and this role would
also be the explicit change agent.
 That r’ will occur has been proven empirically and is now
a recognized phenomena in the software engineering industry.
Estimating what the value of p will be requires addressing the
uncertainty associated with defining the state of r’. It is
important to note that arriving at the definition of r’ and
associated probability should not be attempted by the software
engineer as the focus for the software engineer is on
requirement implementation. To arrive at r’, it is necessary to
engage the source of r’, which is a stakeholder requesting the
requirement implementation in order to determine p and 1-p.
The objective is to anticipate changes in requirements and be
able to represent it in a manner which is independent of
documenting base lined requirements and implementing these.

IV. A CASE STUDY
 A software project that was initiated to replace the existing
file system structure of a small business with a centralized
document repository was used for validating the approach and
utility of collecting meta-requirements. The project started
with collecting data from the file structures stored on the
shared drive of the network supporting the documents used by
employees of the small business. An evaluation was
performed on the IT infrastructure options for the company
and solutions were identified that could replace the
fragmented documentation structure used by the company.
When the technical architecture was created it was determined
that the enterprise version of MS-Access could be deployed to
meet the IT needs of the company while certain documents
could continue to reside on the shared drive. A requirements
document was base lined and this document contained 16
functional requirements and 5 non-functional requirements.
The functional requirements were arrived at by gathering
information present from the files recovered from the
company’s shared drive as well as by conducting interviews
with stakeholders.
 Given that the end users of the system were not tech-
savvy, it was identified that the requirements arrived at with
the help of existing documentation and stakeholders may be
subject to change at various stages of the project including the
user acceptance testing. Anticipating the mercurial nature of
the requirements, a change modeler who had very good
domain knowledge of the small business, was also assigned to
the project and was tasked with modeling meta-requirements.
The requirement change matrix was created that would be
progressively filled and maintained by the change modeler.

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:4, No:4, 2010

357International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
co

no
m

ic
s

an
d

M
an

ag
em

en
t E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

53
3.

pd
f

The table below outlines the requirements change matrix
documented and maintained by the requirements change
modeler. The change in the requirement was not only
anticipated but also documented wherever it occurred.

TABLE II
REQUIREMENT CHANGE MATRIX FOR FUNCTIONAL REQUIREMENTS

Requirement
(R)

Probability of
Delta(∆RN)

Impact of
change

Change
Occur?

R1 - ∆R1 0.0 - N
R2 - ∆ R2 0.1 - N
R3- ∆ R3 0.0 - N
R4 - ∆ R4 0.2 + N
R5-∆ R5 0.0 - N
R6-∆ R6

R7-∆ R7

0.3
0.4

-
-

N
Y

R8-∆ R8

R9-∆ R9

R10-∆ R10

R11-∆ R11

R12-∆ R12

R13-∆ R13

R14-∆ R14

R15-∆ R15

R16-∆ R16

0.3
0.2
0.6
0.7
0.4
0.2
0.5
0.3
0

-
+
-
-
+
-

-+
-
-

N
Y
N
N
Y
N
N
N
N

 The findings were analyzed post-project implementation
and it was uncovered that those requirements that were
uncovered early on and determined to be core requirements
were assigned low probabilities. However, requirements that
were cosmetic by nature and that were not categorized as core
requirements had significantly higher probability for
changing. Essentially the latter were good to have
requirements as opposed to the must-haves. Also the change
modeler had to take into account that the change anticipated in
the requirement could be positive from a business standpoint
but negative from a technology standpoint and would have to
perform a cost-benefit analysis in order to determine whether
the potential change had an overall positive or a negative
impact.
 The limitation of the findings uncovered in the above
study lies in the fact that it represents the findings uncovered
from a single project but is useful for recording empirical
observations. Also the requirement change matrix was not
created for non-functional requirements for the project so the
utility of such an endevour cannot be ascertained for non-
functional requirements.

V. CONCLUSION
 It is important to note that so far we have arrived at two
possible attributes of interest for formulating meta-
requirements – (1) possible modification to requirement which
is represented by r’ (2) probability of occurrence of a
modification to the requirement represented by the probability
(1-p). Further deductive and inductive modeling of the change
entity can be pursued to uncover other relevant attributes of
change that will create a model with attributes of change that
should be uncovered while collecting meta-requirements and
facilitate a climate within software engineering that recognizes
change and accepts it.

 The attributes uncovered thus far were used for recording
observations on a single project to evaluate the approach. It
was uncovered that addressing potential changes to
requirements was a proactive approach that can be used for
elucidating and mitigating project risk as well as identifying
opportunities, where change would have positive implications.
 The requirement change matrix has been introduced as a
tool that can be used to further document and represent the
potential change to requirements as well as the impact to the
overall project. The meta-requirements discussed during
empirical derivation of contemporary projects was also
collected and documented during the study undertaken to
validate the approach mentioned in this paper.
 The overarching benefit of the approach discussed in this
paper is to create a realistic cognitive approach towards
changing requirements that seeks to formally integrate the
phenomena of changing requirements into the software
engineering process.

ACKNOWLEDGMENT
The author would like to thank the organizers of the

conference for giving academic researchers and industry
practitioners the opportunity to address issues and challenges
encountered in the software industry in a dedicated forum.

REFERENCES
[1] Kotonya, G., and Sommerville, I., Requirements Engineering Processes

and Techniques. John Wiley and Sons., 1998, NY
[2] Sidky, A. and Smith, G., Becoming Agile in an imperfect World ,

Manning Publications Co., Greenwich CT 2009
[3] Software Product Line v5 documentation,

http://www.sei.cmu.edu/productlines/ , Software Engineering Institute,
Carnegie Mellon, July 2009

[4] Barbara Paech, "What Is a Requirements Engineer?," IEEE Software,
vol. 25, no. 4, pp. 16-17, July/Aug. 2008, doi:10.1109/MS.2008.106

[5] H. Elizabeth, J. Ken and D. Jeremy, “Requirements Engineering”,
Springer Publications, 2005

[6] K. Schwaber and M. Beedle, “Agile Software Development with
Scrum”, Prentice Hall, 2001

[7] S.W. Ambler, “Agile Architecture: Strategies for scaling Agile
Development”, 2001-2008, http://www.agilemodeling.com

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:4, No:4, 2010

358International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
co

no
m

ic
s

an
d

M
an

ag
em

en
t E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

53
3.

pd
f

