

Abstract—An adaptive software reliability prediction model

using evolutionary connectionist approach based on Recurrent Radial
Basis Function architecture is proposed. Based on the currently
available software failure time data, Fuzzy Min-Max algorithm is
used to globally optimize the number of the k Gaussian nodes. The
corresponding optimized neural network architecture is iteratively
and dynamically reconfigured in real-time as new actual failure time
data arrives. The performance of our proposed approach has been
tested using sixteen real-time software failure data. Numerical results
show that our proposed approach is robust across different software
projects, and has a better performance with respect to next-step-
predictability compared to existing neural network model for failure
time prediction.

Keywords—Neural network, Prediction error, Recurrent Radial

Basis Function Network, Reliability prediction.

I. INTRODUCTION
OFTWARE reliability is defined as the probability that the
software will function during a specified period of time.

The time between successive failures or the cumulative failure
time is a vital indication of software reliability. Most of the
existing analytical software reliability growth models depend
on a priori assumptions about the nature of software faults and
the stochastic behavior of software failure process [5], [6],
[14], [15], [18], [22]. As a result, each model has a different
predictive performance across various projects. A single
universal model that can provide highly accurate predictions
under all circumstances without any assumptions is most
desirable [14], [15], [18]. It has been shown that a neural
network approach is a universal approximator for any non-
linear continuous function with an arbitrary accuracy [5], [8]
and [17]. Consequently, it has become an alternative method
in software reliability modeling, evaluation and prediction.
Karunanithi N., Whitley D., Malaiya Y.K. in [14] and [15]
were the first who propose a neural network approach for
software reliability prediction. From other point of view
Adnan W.A., Yaacob M.H. in [1] and, then, Adnan W.A.,
Yaacob M.H., Anas R., Tamjis M.R. in [2], Aljahdali S.H.,

Ryad Zemouri. is with the Laboratoire d’Automatique du CNAM, 2 Rue

Conté, 75003 Paris, France (corresponding author to provide phone: +33 01
40 27 21 35 / +33 01 58 80 88 56; fax: +33 01 40 27 21 97; e-mail:
ryad.zemouri@cnam.fr).

Paul Ciprian Patic is with Valahia University of Targoviste, Electrical
Engineering Faculty, Automatics, Informatics and Electrical Engineering
Department, 18-24 Unirii Boulevard, 130082, Targoviste, Romania (e-mail:
patic@valahia.ro).

Sheta A., Rine D. in [3] and [4], Ho S.L., Xie M., Goh T.N. in
[11], Park J.Y., Lee S.U., Park J.H. in [18] and Sitte R. in[19]
have also made contributions to software reliability prediction
using neural networks, and have obtained better results
compared to the traditional analytical models with respect to
predictive performance [8].

Most of the published literature used single-input single-
output neural network architecture to build software reliability
growth models. Some examples are: cumulative execution
time as input and the corresponding accumulated number of
defects disclosed as desired output [14] and [15], and failure
sequence number as input and cumulative failure time as
desired output [18]. Recent studies focus on modeling
software reliability based on multiple-delayed-input single-
output neural network architecture. Aljahdali S.H., Sheta A.,
Rine D. in [3] used the most recent four day’s faults observed
before the current day as multiple delayed inputs to predict the
number of faults initially resident at the beginning of testing
process. Cai, K.Y., Cai, L., Wang, W.D., Yu, Z.Y., Zhang, D
in [5] used the most recent 50 inter-failure time as multiple
delayed inputs to predict the next failure time. However, there
has been limited research on a systematic study on the impact
of neural network architecture on performance.

Another potential problem of the existing neural network
approach is arbitrary data partitioning of training and testing
proportion. For example, 70% of the collected data were used
in the training phase, and the remaining 30% of the collected
data were used in the testing phase [3]. Approximately 20% of
data were used for training, and all the remaining data were
used for validation in [18].

The fixed number of collected data (last 30 failure data)
was used for validation purposes in Cai’s experiments
irrespective of the total data set size [5]. Ho S.L., Xie M., Goh
T.N. in [11] adopted a general 80–90% training and 10–20%
testing proportion out of total 74 data points, and more
specifically, 10 observations were used as out-of-sample
testing set. For on-line applications, the number of failure data
increases over time. The fixed neural network architectures do
not address the effect on the performance of prediction as the
number of input failure time data increases.

Many applications using radial basis function networks
(RBF) for system output prediction use only one or two basis
functions, the most popular being the Gaussian function. This
function may not always be appropriate and the aim of this
paper is to show the variation of test set error among six
recognized basis functions. Each RRBF network has been

Recurrent Radial Basis Function Network for
Failure Time Series Prediction

Ryad Zemouri, Paul Ciprian Patic

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1920International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
0/

pd
f

trained using a two-stage approach, the k-means clustering
algorithm for the first stage and singular value decomposition
for the second stage. For this type of network configuration
the results indicate that the choice of basis function (and,
where appropriate, basis width parameter) is data set
dependent and evaluating all recognized basis functions
suitable for RRBF networks is advantageous [23].

In this paper we propose an on-line adaptive software
reliability prediction model using evolutionary connectionist
approach based on Fuzzy Min-Max algorithm. Unlike
traditional neural network failure time data modeling
approach, we want to model the inter-relationship among
software failure time data instead of the relationship between
failure sequence number and failure time data. The inputs and
outputs of the neural network are all failure time data. During
an on-line failure prediction process, Fuzzy Min-Max
algorithm is used to globally optimize the neural network
architecture after every occurrence of software failure time
data. The optimization process determines the number of the k
neurons in the hidden layer and then initializes the k centers.
Thus the k-means technique is used to converge to a good and
stable result. This improves the capability of the neural
network to generalize well when the data is not known,
mitigates the problem of over-fitting in earlier approaches, and
enhances the accuracy of next-step prediction of the
cumulative failure time. The corresponding globally optimized
number of neurons in the hidden layer will be iteratively and
dynamically reconfigured as new failure time data arrives. Our
proposed on-line prediction approach is tested using different
real time software failure data sets. The following sections
describe the implementation of our approach.

II. ON-LINE RELIABILITY PREDICTION
The proposed on-line adaptive software failure prediction

system shown in Fig. 1 consists of a failure history database
and an evolutionary connectionist model. When a software

failure, ix , occurs, the failure history database is updated and

the accumulated failure data (2, ,....,i ix x x) is made available
to the evolutionary connectionist model. The Fuzzy Min-Max
algorithm optimization process determines the optimal or
near-optimal number of the Gaussian hidden neurons. This
information is then used to dynamically reconfigure the neural

network architecture for predicting the next-step failure, $ 1ix + .
Most of the traditional neural network approaches use an

arbitrary data partition for training and testing [3], [5], [11],
[18]. Since our proposed algorithm is tailored for on-line
applications, we investigate the effect of the size of training
patterns on the next-step prediction error. When the number of
software failure time data is large, the amount of time taken
for training with all available data can be a limiting factor.
The rate of occurrence of the failure data depends on the
maturity of the software. If the failure occurrence rate is high,
the amount of time available to accurately predict the next
failure is small. With these practical constraints, trade-offs

between the size of data to be used for training and the next-
step prediction error become critical. Also, when selecting a
subset of data for training, we determine if the data from the
earliest failure observations or the most recent occurrences
yields lower prediction error.

1 2 1, ,....., ix x x −

ix 1 2 1, ,..., ,i ix x x x−

1ix
∧

+

Fig. 1. On-line adaptive failure prediction framework

III. CONNECTIONIST IMPLEMENTATION

A. The RBF network
The RBF consists of two layers observed in Fig. 2 with

architecture similar to that of a two-layer MLP. The distance
between an input vector and a prototype vector determines the
activation of the hidden layer with the nonlinearity provided
by the basis function. The nodes in the output layer usually
perform an ordinary linear weighted sum of these activations,
although non-linear output nodes are an option. Training RBF
can be accomplished by two different approaches depending
on whether the output functions are linear or nonlinear. In the
nonlinear case, the advantage of training simplicity is lost
since a nonlinear optimization of the output weights is
required. Computationally this method is considerably more
demanding, with training times equivalent to MLP. This
approach is not considered here.

1φ 2φ Mφ

1x 2x dx

1y 2y cy

0φ

Fig. 2. Typical RBF network configuration

Mathematically, the network output for linear output nodes

is expressed as follows:

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1921International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
0/

pd
f

0
1

()
M

k kj j j k
j

y w wφ
=

= − +∑ x u

where x is the input vector with elements ix (where i is

the dimension of the input vector); ju
 is the vector

determining the centre of the basis function jφ
 with elements

jiu
; kjw

 are the final layer weights and 0kw is the bias. The

basis function
(.)jφ

 provides the non-linearity and is
discussed in the following section.

Training RBF with linear outputs is very fast and is
accomplished in two stages. The first stage is unsupervised
and accomplished by obtaining cluster centers of the training
set input vectors.

A popular method is k-means clustering, the use of which
was first proposed by Moody and Darken, although other
methods can be employed such as Max–Min, Kohonen
network [16] or simply using a random selection of centers
from the data.

The second stage consists in solving a set of linear
equations, the solution of which can be obtained by a matrix
inversion technique such as singular value decomposition or
by least squares.

B. The Recurrent Radial Basis function network
(RRBF)

The Recurrent RBF neural network considers time as an
internal representation [7] and [9]. The dynamic aspect is
obtained by the use of an additional self-connection on the
input neurons with a sigmoid activation function. These
looped neurons are a special case of Locally Recurrent
Globally Feed-forward architecture, called local output feed-
back [20]. The RRBF network can thus take into account a
certain past of the input signal.

Each neuron of the input layer gives a summation at the

instant t between its input ix and its previous output weighted

by a self-connection iiw : The output of its activation function
is:

() (1) ()i ii i ia t w t x tξ= − +

()() ()i it f a tξ = (1)

where ()ia t and ()i tξ represent respectively the neuron

activation and its output at the instant t, f is the sigmoid
activation function:

() 1 exp()
1 exp()

kxf x
kx

− −
=

+ − (2)
To highlight the influence of this self-connection, we let

evolve the neuron without an external influence. The initial

conditions are: the input () 0ix t = t∀ and (0) 1iξ = ± .

Neuron output evolves according to the following expression:

() ()
()

1 exp (1)
() ()

1 exp (1)
ii i

i i
ii i

kw t
t f a t

kw t
ξ

ξ
ξ

− − −
= =

+ − − (3)
Fig.3 shows the temporal evolution of the neuron output.

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.99iikw =

1.9iikw =

Fig. 3. The output of the looped neuron for two initial conditions:
(0) 1iξ = + and (0) 1iξ = − .

This evolution depends on two parameters: the self

connection weight iiw and the k value of the activation
function parameter. The equilibrium points δ of the looped
neuron satisfy the following equation:

()iiw fδ δ=
According to iikw , the looped neuron has one or more

equilibrium points:

If 2iikw ≤ , the neuron has only one equilibrium point
0δ = .

If 2iikw > , the neuron has three equilibrium points 0δ = ,
0δ + > , 0δ − < .

The looped neuron can thus exhibit two behaviors

according to iikw : the forgetting behavior 2iikw ≤ and the

temporal memory behavior 2iikw > [23], [24].
Self-connection gives to the neuron the capacity to

memorize a certain past of the input data. The weight of this
self-connection can be obtained by training, but the easier way
to do it is to fix it a priori. The best performance is obtained

with 2iikw = .

IV. DATA VALIDATION
The performance of our proposed approach has been tested

using Software Reliability Dataset application. The objective
of this dataset is to collect failure interval data to assist
software managers in monitoring test status and predicting
schedules and to assist software researchers in validating
software reliability models. The dataset consists of software
failure data on 16 projects. Careful controls were employed
during data collection to ensure that the data would be of high
quality. The data was collected throughout the mid 1970’s. It
represents projects from a variety of applications including

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1922International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
0/

pd
f

real time command and control, word processing, commercial,
and military applications. The following table displays the size
of each sample of failure data for each project in the dataset.
Fig. 4 shows the cumulative failure time in hour of the second
data set. This dataset, from table 1, is available on:
https://www.thedacs.com/databases/sled/swrel.php.)

TABLE I

DATA SETS WITH THE NUMBER OF FAILURES USED IN THE EXPERIMENTS

System Code Number of Failures

data_1 136
data_2 54
data_3 38
data_4 53
data_5 831
data_6 73

data_14C 36
data_17 38
data_27 41
data_40 101

data_SS1A 112
data_SS1B 375
data_SS1C 277
data_SS2 192
data_SS3 278
data_SS4 196

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Failure Sequence Number

C
um

ul
at

iv
e

Fa
ilu

re
 T

im
e

(H
ou

re
)

Fig. 4. Cumulative failure time for the data_2

To determine the next-step-predictability, we iteratively
present the failure time data one at a time to the dynamically

learned and optimized network. 1 1, ,......i i i kx x x+ + − are used to

predict the value of i kx + .

i i

i

x xRE
x
−

=
 (4)

where ix is the predicted value of cumulative failure time,

and ix is the actual value of cumulative failure time. For
example, using DATA-1, 90 of the next-step predicted values
fall within 1% of their actual observed values. The results
show that our proposed evolutionary neural networks
approach provides highly accurate online prediction
capability. The proposed evolutionary connectionist model

dynamically learns and optimizes the neural network
architecture whenever a new failure time data arrives, and is
easily implemented to predict failures in real-time.

From Table 1 and Table 2 one has some data used in Fig. 5
(a - g) to represent graphically. One can realize that all the
figures, from below, used data represented in both tables.

TABLE II

PERFORMANCES RESULTS OF NEXT-STEP-PREDICTABILITY
Next-step-predictability (RE ≤1%)

data_1 data_2 data_3 data_4 data_5 data_6 data_14C data_17

90% 100% 85% 87% 97% 90% 91% 95%

data_27 Data_40 data_SS1A data_SS1B data_SS1C data_SS2 data_SS3 Data_SS4
95% 77% 95% 89% 92% 90% 82% 87%

Fig. 5(a).

Fig. 5(b).

Fig. 5(c).

Fig. 5(d).

Fig. 5(e).

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1923International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
0/

pd
f

Fig. 5(f).

Fig. 5(g).

Fig. 5(a, b, c, d, e, f, g). Deviation between the next-step predicted

value and the real value

V. CONCLUSION
In this paper, an on-line adaptive software reliability

prediction model using evolutionary connectionist approach
based on multiple-delayed-input single-output architecture is
proposed.

Based on the currently available software failure time data,
Fuzzy Min-Max algorithm is used to globally optimize the
number of the k Gaussian nodes. This technique allows
determining and initializing the k-centers of the neural
network architecture in an iterative way.

The corresponding optimized neural network architecture is
iteratively and dynamically reconfigured in real-time as new
failure time data arrives.

Experimental results show that our proposed approach is
robust across different software projects, and has a good
performance with respect to next-step-predictability.

REFERENCES
[1] Adnan, W.A., Yaacob, M.H., 1994. An integrated neural-fuzzy system

of software reliability prediction. In: Proceedings of the 1st International
Conference on Software Testing, Reliability and Quality Assurance. pp.
154–158.

[2] Adnan, W.A., Yaacob, M.H., Anas, R., Tamjis, M.R., 2000. Artificial
neural network for software reliability assessment. In: 2000 TENCON
Proceedings of Intelligent Systems and Technologies for the New
Millennium. pp. 446–451.

[3] Aljahdali, S.H., Sheta, A., Rine, D., 2001. Prediction of software
reliability: a comparison between regression and neural network non-
parametric models. In: Proceedings of ACS/IEEE International
Conference on Computer Systems and Applications. pp. 470–473.

[4] Aljahdali, S.H., Sheta, A., Rine, D., 2002. Predicting accumulated faults
in software testing process using radial basis function network models.
In: Proceedings of the 17th International Conference on Computers and
their Applications. pp. 26–29.

[5] Cai, K.Y., Cai, L., Wang, W.D., Yu, Z.Y., Zhang, D., 2001. On the
neural network approach in software reliability modeling. The Journal of
Systems and Software 58 (1), 47–62.

[6] Cai, K.Y., Wen, C.Y., Zhang, M.L., 1991. A critical review on software
reliability modeling. Reliability Engineering and System Safety 32 (3),
357–371.

[7] Chappelier J.C., Grumbach A., «A Kohonen Map for Temporal
Sequences», Proceeding of neural Networks and Their Application,
NEURAP'96, IUSPIM, Marseille, mars 1996, p. 104-110.

[8] Chua, C.G., Goh, A.T.C., 2003. A hybrid Bayesian back-propagation
neural network approach to multivariate modeling. International Journal
for Numerical and Analytical Methods in Geomechanics 27(8),651–667.

[9] Elman J.L., « Finding Structure in Time », Cognitive Science, vol. 14,
juin 1990, p. 179-211.

[10] Fahlman, S.E., Lebiere, C., 1990. The cascade-correlation learning
architecture. Technical Report CMU-CS-90-100, School of Computer
Science, Carnegie Mellon University.

[11] Ho, S.L., Xie, M., Goh, T.N., 2003. A study of the connectionist models
for software reliability prediction. Computers and Mathematics with
Applications 46 (7), 1037–1045.

[12] Hochman, R., Khoshgoftaar, T.M., Allen, E.B., Hudepohl, J.P., 1996.
Using the genetic algorithm to build optimal neural networks for fault-
prone module detection. In: Proceedings of the 7th International
Symposium on Software Reliability Engineering. pp. 152–162.

[13] Hochman, R., Khoshgoftaar, T.M., Allen, E.B., Hudepohl, J.P., 1997.
Evolutionary neural networks: a robust approach to software reliability
problems. In: Proceedings of the 8th International Symposium on
Software Reliability Engineering. pp. 13–26.

[14] Karunanithi, N., Whitley, D., Malaiya, Y.K., 1992a. Prediction of
software reliability using connectionist models. IEEE Transactions on
Software Engineering 18 (7), 563–574.

[15] Karunanithi, N., Whitley, D., Malaiya, Y.K., 1992b. Using neural
networks in reliability prediction. IEEE Software 9 (4), 53–59.

[16] Kohonen T., Self-organised formation of topologically correct feature
maps, Biol. Cybern. 43 (1982) 59–69 (reprinted in Anderson and
Rosen.eld, 1988).

[17] Leung, F.H.F., Lam, H.K., Ling, S.H., Tam, P.K.S., 2003. Tuning of the
structure and parameters of a neural network using an improved genetic
algorithm. IEEE Transactions on Neural Networks 14 (1), 79–88.

[18] Park, J.Y., Lee, S.U., Park, J.H., 1999. Neural network modeling for
software reliability prediction from failure time data. Journal of
Electrical Engineering and Information Science 4 (4), 533–538.

[19] Sitte, R., 1999. Comparison of software-reliability-growth predictions:
neural networks vs. parametric-recalibration. IEEE Transactions on
Reliability 48 (3), 285–291.

[20] Tsoi C.T., Back A.D., « Locally Recurrent Globally Feedforward
Networks : A Critical Review of Architectures », IEEE Transaction on
Neural Networks Vol.05, pp. 229-239, 1994.

[21] Tsoukalas, L.H., Uhrig, R.E., 1996. Fuzzy and Neural Approaches in
Engineering. Practical Aspects of Using Neural Networks. John Wiley &
Sons, New York, Chapter 11, pp. 385–405.

[22] Utkin, L.V., Gurov, S.V., Shubinsky, M.I., 2002. A fuzzy software
reliability model with multiple-error introduction and removal.
International Journal of Reliability, Quality and Safety Engineering 9
(3), 215–227.

[23] Zemouri, R., Patic P.C., The effect of different basis functions for
system output prediction, 15th IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA’2010,
September 13-16, 2010, Bilbao Spain (Submitted for publication).

[24] Zemouri, R., Patic P.C., Prediction Error Feedback for Time Series
Prediction: a way to improve the accuracy of predictions, Proceedings of
the 4th EUROPEAN COMPUTING CONFERENCE (ECC '10), April
20-22, 2010, Bucharest, Romania, p. 58-62, ISSN 1790-5117, ISBN
978-960-474-178-6.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1924International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
0/

pd
f

