
 

 

  
Abstract—An adaptive software reliability prediction model 

using evolutionary connectionist approach based on Recurrent Radial 
Basis Function architecture is proposed. Based on the currently 
available software failure time data, Fuzzy Min-Max algorithm is 
used to globally optimize the number of the k Gaussian nodes. The 
corresponding optimized neural network architecture is iteratively 
and dynamically reconfigured in real-time as new actual failure time 
data arrives. The performance of our proposed approach has been 
tested using sixteen real-time software failure data. Numerical results 
show that our proposed approach is robust across different software 
projects, and has a better performance with respect to next-step-
predictability compared to existing neural network model for failure 
time prediction. 

 
Keywords—Neural network, Prediction error, Recurrent Radial 

Basis Function Network, Reliability prediction.  

I. INTRODUCTION 
OFTWARE reliability is defined as the probability that the 
software will function during a specified period of time. 

The time between successive failures or the cumulative failure 
time is a vital indication of software reliability. Most of the 
existing analytical software reliability growth models depend 
on a priori assumptions about the nature of software faults and 
the stochastic behavior of software failure process [5], [6], 
[14], [15], [18], [22]. As a result, each model has a different 
predictive performance across various projects. A single 
universal model that can provide highly accurate predictions 
under all circumstances without any assumptions is most 
desirable [14], [15], [18]. It has been shown that a neural 
network approach is a universal approximator for any non-
linear continuous function with an arbitrary accuracy [5], [8] 
and [17]. Consequently, it has become an alternative method 
in software reliability modeling, evaluation and prediction. 
Karunanithi N., Whitley D., Malaiya Y.K. in [14] and [15] 
were the first who propose a neural network approach for 
software reliability prediction. From other point of view 
Adnan W.A.,  Yaacob M.H. in [1] and, then, Adnan W.A., 
Yaacob M.H., Anas R., Tamjis M.R. in [2], Aljahdali S.H., 
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Sheta A., Rine D. in [3] and [4], Ho S.L., Xie M., Goh T.N. in 
[11], Park J.Y., Lee S.U., Park J.H. in [18] and Sitte R. in[19] 
have also made contributions to software reliability prediction 
using neural networks, and have obtained better results 
compared to the traditional analytical models with respect to 
predictive performance [8].  

Most of the published literature used single-input single- 
output neural network architecture to build software reliability 
growth models. Some examples are: cumulative execution 
time as input and the corresponding accumulated number of 
defects disclosed as desired output [14] and [15], and failure 
sequence number as input and cumulative failure time as 
desired output [18]. Recent studies focus on modeling 
software reliability based on multiple-delayed-input single-
output neural network architecture. Aljahdali S.H., Sheta A., 
Rine D. in [3] used the most recent four day’s faults observed 
before the current day as multiple delayed inputs to predict the 
number of faults initially resident at the beginning of testing 
process. Cai, K.Y., Cai, L., Wang, W.D., Yu, Z.Y., Zhang, D 
in [5] used the most recent 50 inter-failure time as multiple 
delayed inputs to predict the next failure time. However, there 
has been limited research on a systematic study on the impact 
of neural network architecture on performance. 

Another potential problem of the existing neural network 
approach is arbitrary data partitioning of training and testing 
proportion. For example, 70% of the collected data were used 
in the training phase, and the remaining 30% of the collected 
data were used in the testing phase [3]. Approximately 20% of 
data were used for training, and all the remaining data were 
used for validation in [18].  

The fixed number of collected data (last 30 failure data) 
was used for validation purposes in Cai’s experiments 
irrespective of the total data set size [5]. Ho S.L., Xie M., Goh 
T.N. in [11] adopted a general 80–90% training and 10–20% 
testing proportion out of total 74 data points, and more 
specifically, 10 observations were used as out-of-sample 
testing set. For on-line applications, the number of failure data 
increases over time. The fixed neural network architectures do 
not address the effect on the performance of prediction as the 
number of input failure time data increases. 

Many applications using radial basis function networks 
(RBF) for system output prediction use only one or two basis 
functions, the most popular being the Gaussian function. This 
function may not always be appropriate and the aim of this 
paper is to show the variation of test set error among six 
recognized basis functions. Each RRBF network has been 
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trained using a two-stage approach, the k-means clustering 
algorithm for the first stage and singular value decomposition 
for the second stage. For this type of network configuration 
the results indicate that the choice of basis function (and, 
where appropriate, basis width parameter) is data set 
dependent and evaluating all recognized basis functions 
suitable for RRBF networks is advantageous [23]. 

In this paper we propose an on-line adaptive software 
reliability prediction model using evolutionary connectionist 
approach based on Fuzzy Min-Max algorithm. Unlike 
traditional neural network failure time data modeling 
approach, we want to model the inter-relationship among 
software failure time data instead of the relationship between 
failure sequence number and failure time data. The inputs and 
outputs of the neural network are all failure time data. During 
an on-line failure prediction process, Fuzzy Min-Max 
algorithm is used to globally optimize the neural network 
architecture after every occurrence of software failure time 
data. The optimization process determines the number of the k 
neurons in the hidden layer and then initializes the k centers. 
Thus the k-means technique is used to converge to a good and 
stable result. This improves the capability of the neural 
network to generalize well when the data is not known, 
mitigates the problem of over-fitting in earlier approaches, and 
enhances the accuracy of next-step prediction of the 
cumulative failure time. The corresponding globally optimized 
number of neurons in the hidden layer will be iteratively and 
dynamically reconfigured as new failure time data arrives. Our 
proposed on-line prediction approach is tested using different 
real time software failure data sets. The following sections 
describe the implementation of our approach. 

II.  ON-LINE RELIABILITY PREDICTION 
The proposed on-line adaptive software failure prediction 

system shown in Fig. 1 consists of a failure history database 
and an evolutionary connectionist model. When a software 

failure, ix , occurs, the failure history database is updated and 

the accumulated failure data ( 2, ,....,i ix x x ) is made available 
to the evolutionary connectionist model. The Fuzzy Min-Max 
algorithm optimization process determines the optimal or 
near-optimal number of the Gaussian hidden neurons. This 
information is then used to dynamically reconfigure the neural 

network architecture for predicting the next-step failure, $ 1ix + . 
Most of the traditional neural network approaches use an 

arbitrary data partition for training and testing [3], [5], [11], 
[18]. Since our proposed algorithm is tailored for on-line 
applications, we investigate the effect of the size of training 
patterns on the next-step prediction error. When the number of 
software failure time data is large, the amount of time taken 
for training with all available data can be a limiting factor. 
The rate of occurrence of the failure data depends on the 
maturity of the software. If the failure occurrence rate is high, 
the amount of time available to accurately predict the next 
failure is small. With these practical constraints, trade-offs 

between the size of data to be used for training and the next-
step prediction error become critical. Also, when selecting a 
subset of data for training, we determine if the data from the 
earliest failure observations or the most recent occurrences 
yields lower prediction error.  

 

1 2 1, ,....., ix x x −

ix 1 2 1, ,..., ,i ix x x x−

1ix
∧

+

 
Fig. 1. On-line adaptive failure prediction framework 

III. CONNECTIONIST IMPLEMENTATION 

A.  The RBF network 
The RBF consists of two layers observed in Fig. 2 with 

architecture similar to that of a two-layer MLP. The distance 
between an input vector and a prototype vector determines the 
activation of the hidden layer with the nonlinearity provided 
by the basis function. The nodes in the output layer usually 
perform an ordinary linear weighted sum of these activations, 
although non-linear output nodes are an option. Training RBF 
can be accomplished by two different approaches depending 
on whether the output functions are linear or nonlinear. In the 
nonlinear case, the advantage of training simplicity is lost 
since a nonlinear optimization of the output weights is 
required. Computationally this method is considerably more 
demanding, with training times equivalent to MLP. This 
approach is not considered here. 

 

1φ 2φ Mφ

1x 2x dx

1y 2y cy

0φ

 
Fig. 2. Typical RBF network configuration 

 
Mathematically, the network output for linear output nodes 

is expressed as follows: 
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0
1

( )
M

k kj j j k
j

y w wφ
=

= − +∑ x u
 

where x  is the input vector with elements ix  (where i is 

the dimension of the input vector); ju
 is the vector 

determining the centre of the basis function jφ
 with elements 

jiu
; kjw

 are the final layer weights and 0kw  is the bias. The 

basis function 
(.)jφ

 provides the non-linearity and is 
discussed in the following section. 

Training RBF with linear outputs is very fast and is 
accomplished in two stages. The first stage is unsupervised 
and accomplished by obtaining cluster centers of the training 
set input vectors.  

A popular method is k-means clustering, the use of which 
was first proposed by Moody and Darken, although other 
methods can be employed such as Max–Min, Kohonen 
network [16] or simply using a random selection of centers 
from the data.  

The second stage consists in solving a set of linear 
equations, the solution of which can be obtained by a matrix 
inversion technique such as singular value decomposition or 
by least squares. 

B.  The Recurrent Radial Basis function network 
(RRBF) 

The Recurrent RBF neural network considers time as an 
internal representation [7] and [9]. The dynamic aspect is 
obtained by the use of an additional self-connection on the 
input neurons with a sigmoid activation function. These 
looped neurons are a special case of Locally Recurrent 
Globally Feed-forward architecture, called local output feed-
back [20]. The RRBF network can thus take into account a 
certain past of the input signal. 

Each neuron of the input layer gives a summation at the 

instant t between its input ix  and its previous output weighted 

by a self-connection iiw : The output of its activation function 
is: 

 
( ) ( 1) ( )i ii i ia t w t x tξ= − +  

( )( ) ( )i it f a tξ =                                                                 (1) 
 

where ( )ia t  and ( )i tξ  represent respectively the neuron 

activation and its output at the instant t, f  is the sigmoid 
activation function: 

( ) 1 exp( )
1 exp( )

kxf x
kx

− −
=

+ −                                                          (2) 
To highlight the influence of this self-connection, we let 

evolve the neuron without an external influence. The initial 

conditions are: the input ( ) 0ix t =  t∀  and (0) 1iξ = ± . 

Neuron output evolves according to the following expression: 

( ) ( )
( )

1 exp ( 1)
( ) ( )

1 exp ( 1)
ii i

i i
ii i

kw t
t f a t

kw t
ξ

ξ
ξ

− − −
= =

+ − −                          (3) 
Fig.3 shows the temporal evolution of the neuron output. 
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Fig. 3. The output of the looped neuron for two initial conditions: 
(0) 1iξ = +  and (0) 1iξ = − .  

 
This evolution depends on two parameters: the self 

connection weight iiw  and the k value of the activation 
function parameter. The equilibrium points δ  of the looped 
neuron satisfy the following equation: 

( )iiw fδ δ=  
According to iikw , the looped neuron has one or more 

equilibrium points: 

If 2iikw ≤ , the neuron has only one equilibrium point 
0δ = . 

If 2iikw > , the neuron has three equilibrium points 0δ = , 
0δ + > , 0δ − < . 

The looped neuron can thus exhibit two behaviors 

according to iikw : the forgetting behavior 2iikw ≤  and the 

temporal memory behavior 2iikw >  [23], [24]. 
Self-connection gives to the neuron the capacity to 

memorize a certain past of the input data. The weight of this 
self-connection can be obtained by training, but the easier way 
to do it is to fix it a priori. The best performance is obtained 

with 2iikw = . 

IV. DATA VALIDATION 
The performance of our proposed approach has been tested 

using Software Reliability Dataset application. The objective 
of this dataset is to collect failure interval data to assist 
software managers in monitoring test status and predicting 
schedules and to assist software researchers in validating 
software reliability models. The dataset consists of software 
failure data on 16 projects. Careful controls were employed 
during data collection to ensure that the data would be of high 
quality. The data was collected throughout the mid 1970’s. It 
represents projects from a variety of applications including 
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real time command and control, word processing, commercial, 
and military applications. The following table displays the size 
of each sample of failure data for each project in the dataset. 
Fig. 4 shows the cumulative failure time in hour of the second 
data set. This dataset, from table 1, is available on: 
https://www.thedacs.com/databases/sled/swrel.php.) 

 
TABLE  I 

DATA SETS WITH THE NUMBER OF FAILURES USED IN THE EXPERIMENTS 
 

System Code Number of Failures 

data_1 136 
data_2 54 
data_3 38 
data_4 53 
data_5 831 
data_6 73 

data_14C 36 
data_17 38 
data_27 41 
data_40 101 

data_SS1A 112 
data_SS1B 375 
data_SS1C 277 
data_SS2 192 
data_SS3 278 
data_SS4 196 
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Fig. 4. Cumulative failure time for the data_2 

To determine the next-step-predictability, we iteratively 
present the failure time data one at a time to the dynamically 

learned and optimized network. 1 1, ,......i i i kx x x+ + −  are used to 

predict the value of i kx + .  

i i

i

x xRE
x
−

=
                                                                      (4) 

where ix  is the predicted value of cumulative failure time, 

and ix  is the actual value of cumulative failure time. For 
example, using DATA-1, 90 of the next-step predicted values 
fall within 1% of their actual observed values. The results 
show that our proposed evolutionary neural networks 
approach provides highly accurate online prediction 
capability. The proposed evolutionary connectionist model 

dynamically learns and optimizes the neural network 
architecture whenever a new failure time data arrives, and is 
easily implemented to predict failures in real-time.  

From Table 1 and Table 2 one has some data used in Fig. 5 
(a - g) to represent graphically. One can realize that all the 
figures, from below, used data represented in both tables. 

 
TABLE  II 

PERFORMANCES RESULTS OF NEXT-STEP-PREDICTABILITY 
Next-step-predictability (RE ≤1%) 

 
data_1 data_2 data_3 data_4 data_5 data_6 data_14C data_17 

90% 100% 85% 87% 97% 90% 91% 95% 
        

data_27 Data_40 data_SS1A data_SS1B data_SS1C data_SS2 data_SS3 Data_SS4
95% 77% 95% 89% 92% 90% 82% 87% 

 

 
Fig. 5(a). 

 
Fig. 5(b). 

 
Fig. 5(c). 

 

 
Fig. 5(d). 

 
Fig. 5(e). 
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Fig. 5(f). 

 
Fig. 5(g). 

 
Fig. 5(a, b, c, d, e, f, g). Deviation between the next-step predicted 

value and the real value 

V.  CONCLUSION 
In this paper, an on-line adaptive software reliability 

prediction model using evolutionary connectionist approach 
based on multiple-delayed-input single-output architecture is 
proposed.  

Based on the currently available software failure time data, 
Fuzzy Min-Max algorithm is used to globally optimize the 
number of the k Gaussian nodes. This technique allows 
determining and initializing the k-centers of the neural 
network architecture in an iterative way.  

The corresponding optimized neural network architecture is 
iteratively and dynamically reconfigured in real-time as new 
failure time data arrives. 

Experimental results show that our proposed approach is 
robust across different software projects, and has a good 
performance with respect to next-step-predictability. 
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