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Abstract— We introduce a logic-based framework for database
updating under constraints. In our framework, the constraints are
represented as an instantiated extended logic program. When per-
forming an update, database consistency may be violated. We provide
an approach of maintaining database consistency, and study the
conditions under which the maintenance process is deterministic. We
show that the complexity of the computations and decision problems
presented in our framework is in each case polynomial time.

Keywords—Databases,   knowledge   bases, constraints,   updates,
minimal change, consistency.

I. INTRODUCTION

WE introduce a logic-based framework for describing
and automatically enforcing constraints on databases

during updating. There is an emerging variety of applications
for which automatic enforcement of constraints is more ap-
propriate than the traditional approach (according to which
updates are rejected in case of inconsistency). Among these
applications we mention temporal databases and data ware-
houses.

In our approach, the database is seen as a set of ground
literals, and each constraint is seen as a rule

� � � � � 	 	 	 � � � �
where

� � � � � 	 	 	 � � �
are literals. The intuitive meaning of a

constraint is that, if all the literals
� � � 	 	 	 � � �

are in the database,
then the literal

�
must also be in the database. Therefore the

enforcement of a constraint may imply side effects, in the
following sense: if the literals

� � � 	 	 	 � � �
are inserted in the

database then it may be necessary to also insert the literal�
. Such side effects are necessary in order to enforce the

constraint. Constraints differ from usual Datalog rules in the
following ways:

1) A constraint can have a negative literal in the head.
2) A constraint can cause side effects during updating.
3) As a consequence of 1) and 2), two constraints can

be inconsistent, in the sense that their enforcement
requires conflicting actions (e.g. one constraint requiring
insertion of a literal

�
while the other requiring deletion

of the same literal).
4) Constraints have priority over usual Datalog rules, i.e. a

literal can be derived by a usual Datalog rule only if its
negation is not derivable by a constraint.

Note that the set of constraints can be seen as an instanti-
ated extended logic program (extended as rules may contain
negation in their head).

One basic assumption of our approach is that both the
database and the set of constraints are consistent. The database
is consistent if it does not contain a literal and its negation,
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while a set of constraints is consistent if, starting with any
literal

�
, it cannot generate another literal

� �
and its negation.

We call semantics of a database � with set of constraints�
, the set � of all literals generated by � using the rules

of
�

. Clearly, the semantics � can be inconsistent even if
both � and

�
are consistent. For example, if � � �  � ! # $

and� � � # �  $
, then � and

�
are consistent, but � � �  � # � ! # $

is inconsistent.
By updating a database � we mean inserting or deleting

a literal while leaving the database consistent. For a set of
literals � to qualify as a possible semantics for the updated
database, we impose a set of requirements similar to those of
[11]. We show that, under these requirements, we can always
find at least one semantics � �

for the updated database.
In this paper, we tackle also the problem of semantic

determinism of updating, i.e. we study the class of rule based
constraints for which there is always exactly one possible
semantics � �

for the updated database. In this context, the
main contributions of the paper are:

1) a characterization of the deterministic sets of constraints,
and

2) a reduction of deterministic sets of constraints to (equiv-
alent) sets of “simple constraints”, i.e. constraints of the
form

� � � �
.

One basic difference between our approach to updating and
most other approaches, lies in the definition of the so-called
minimal change requirement. Indeed, in order for a set of
literals � �

to qualify as a possible semantics for the updated
database, we require the following two conditions:

1) � �
must be as “close” as possible to the semantics � of

the initial database
2) � �

must contain as many as possible of the literals in � .

Most previous approaches to updating (see for example [11])
require condition 1 but not condition 2. In these approaches
“closeness” between � and � �

is measured by the symmetric
difference � , � �

. However, as we shall show, minimizing the
symmetric difference does not necessarily mean keeping as
many as possible of the literals from the initial database.

It is precisely this observation that led us to consider a
different measure of change whose minimization implies that
of the symmetric difference while guaranteeing, at the same
time, keeping as many as possible of the literals from the
initial database. Our definition of minimal change is inspired
by the approach of [7].

We do not consider Datalog programs in this paper, but
we can view the database itself, i.e. � , as the result of the
application of Datalog rules, on which the constraints are then
enforced. That is, the idea is that the constraint rules may be
viwed as being prioritary on the Datalog rules.

Several papers tackle the matter of databases/knowledge
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bases updating/revision using logic-based constraints. [5] ex-
tends the Revision Programming framework (a logic-based
framework to express and maintain constraints on knowledge
bases) with different forms of preferences. Preferences are
used in order to solve the problem of nondeterminism in
revising a knowledge base or logic program in presence of
conflicting constraints. [2] investigates updating of knowledge
bases represented by logic programs. Negative information
is represented by using generalized logic programs which
allow default negation also in the heads. A logic program�

may be updated by another logic program � . The paper
proposes a paradigm of dynamic logic programming leading
to a modularisation of logic programs, in the sense mentioned
above regarding the two programs. [3] presents a language
capable of considering sequences of logic programs that result
from the consecutive updates of an initial program, by using a
priority relation among the rules of all successive programs. In
[8] one provides a methodology and framework for expressing
general preference information in logic programming under
the answer set semantics. [1] proposes a method to compile
programs formalizing update plus preference reasoning into
standard generalized logic programs. [12] addresses efficiency
issues during the process of integrity maintenance in deductive
databases.

The rest of the paper is organized as follows: in section II we
give some basic definitions and notation concerning databases.
In section III, we define update semantics and we show the
existence of at least one semantics for the updated database.
In section IV, we focus on deterministic sets of constraints and
their characterization, while in section V we show that every
deterministic set of constraints can be reduced to an equivalent
set of simple constraints, i.e. constraints of the form

� � � �
.

Finally, section VI contains concluding remarks. We present
also complexity results related to all computational aspects in
each of the sections II, III, IV and V.

II. THE DATABASE

We view a database as a set of ground literals together with
a set of constraints. In order to give the formal definition we
need some notation.

We assume a fixed function-free alphabet A consisting of
constants, variables and predicates. Given a predicate � of arity� and the terms � � � � � � � � � � �

, the formula � � � � � � � � � � � � � �
is

referred to as positive literal and the formula
� � � � � � � � � � � � � � �

as a negative literal. A ground literal is a literal that contains
no variables.

A constraint is a rule of the form
� � � � � � � � � � � �

where� � � � � � � � � � �
are literals and � � � .

Definition 2.1: - Database. A database is a set � of ground
literals together with a set

�
of constraints. �

Intuitively, the literals of � represent real-world facts and
the constraints represent properties that the facts must satisfy.
Clearly, � changes when the real-world changes, while

�
may

not change. For the purposes of this paper, we assume that
�

is fixed, so we shall say “the database � ” omitting
�

.
We associate every set of constants � with its Herbrand

base, denoted by � � � and consisting of all ground positive

literals containing only constants from � . For every subset �
of the Herbrand base we denote by

� 
 � the set � � � � � � � � 

A subset  of � � � " � 
 � � � is $ & � ( ) ( � * � � if there is no
fact � such that � and

� � are both in  ; otherwise  is
inconsistent. Let � & ( �  �

and � * , �  �
be the (unique) subsets

of � � � such that  � � & ( �  � " � 
 � * , �  �
. Obviously  

is consistent if and only if � & ( �  �
and � * , �  �

are disjoint
subsets. We denote by

� 
  the set � * , �  � " � 
 � & ( �  �
.

Let � be a database and
�

its set of constraints. Let � be a
fixed set of constants containing all constants appearing in

�
.

Let , 3 & 6 � 8 � � �
be the set of all instantiations of rules from

� �
in which the variables have been replaced by constants from
� 


The Herbrand base of
�

denoted by � � ; is defined to be
that of � �

i.e. � � ; � � � = 

Let > be a set of ground literals,

i.e. let > be a subset of � � " � 
 � � . We associate
�

with an
operator @ ; �

called semantic operator and defined as follows:
@ ; � > � � > " � � � � � � � � � � � � � � � � � � , 3 & 6 � 8 � � � �

where
� � � � � � � � � � � � > �

.
When the set of constraints is understood from context, we
simply write @ instead of @ ; 


It is obvious that @ ; is
a monotone operator, with respect to set inclusion, so the
sequence:

@ B � > � � > and @
�

� > � � @ � @ F
� H � J

� > � � �
for every integer � L N �

has a limit. This limit, denoted by
� O � � @ � > �

or by @ P is referred
to as the least fixpoint of @ with respect to > . If

�
is a ground

literal, we denote @ Q R T by @ R 

As @ is monotone, we can prove

that
� O � � @ � > �

is also monotone in its second argument (with
respect to set inclusion).

Proposition 2.1: If > and U are two sets of ground literals
such that > W U then @ P W @ Z , i.e.

� O � � @ � > �
is monotone in

its second argument. �
The following lemma characterizes a set > of ground literals

deductively closed under the rules of
�

, i.e. a set > such that
@ � > � W > .

Lemma 2.1: @ � > � W > iff @ P � > 
 �
Note that @ P may be an inconsistent set, and that incon-

sistency of @ P may be caused either by the constraints of�
or by the literals of > 


For example, if > � � � �
and� � � � � � � � � � � �

then we have: @ P � � � � � � � � � �
which

is an inconsistent set.

Definition 2.2: - Database Semantics. The semantics of a
database � is defined to be the least fixpoint of @ with respect
to � , namely @ ^ . A database � is called consistent if its
semantics is consistent. �

It is not difficult to show that the semantics of a database
is computed in polynomial time w.r.t. the size of the set of
stored facts.

Definition 2.3: - Consistent constraints. We say that
�

is
a consistent set of constraints if for any ground literal

�
there

exists a set of ground literals � such that @ _ ` Q R T is a consistent
set. �

In other words,
�

is consistent if for any ground literal
�

there exists a consistent database containing
�
. We have the

following characterization of constraint consistency:
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Proposition 2.2:
�

is consistent if and only if � � is a
consistent set for any ground literal

�
. �

Example 2.1: Let
�

be � � � � � � � � � � � � � 	
. Obviously�

is a consistent set of constraints since for any ground literal�
, � � 
 � � 	

is consistent. Note that
�

expresses the fact that�
and � cannot be both in the database. �
From now on we shall deal only with consistent sets of

constraints. That is, when talking about sets of constraints,
even if not mentioned, they will be supposed to be consistent.
Moreover, we assume that all constraints are instantiated. So
from now on, � is a set of ground literals and

�
is a set of

instantiated rules.

III. UPDATE SEMANTICS

Let � be a consistent database with constraints
�

and
semantics � (i.e. � 
 � � ). Updating � means inserting
or removing a ground literal

� �
while leaving the database

consistent. Inserting
�

means that
�

must be in the semantics
of the updated database, while removing

�
means that

�
must

not be in the semantics of the updated database. We denote
by � � � � 


the insertion of
�

and by � 
 � � � 

the deletion of

� �
In order for an update to be acceptable, the semantics

� �
of the updated database must satisfy certain conditions.

Before giving formal definitions, we describe these conditions
informally, as follows:

1) � �
must contain

�
in the case of insertion, and must not

contain
�

in the case of deletion
2) � �

must be consistent
3) � �

must be deductively closed under the rules of
�

4) Every literal of � �
must be “justifiable” from those

literals of � that are still present in � �
(and from the

inserted literal
�
, in the case of insertion).

5) � �
must represent a “minimal change” with respect to

the semantics � of the initial database.
Any set of literals � �

that satisfies the above conditions is
an acceptable semantics for the updated database. In general,
there are � , � or more sets � �

that satisfy these conditions. In
this paper, we are interested in sets

�
of constraints that admit

exactly one set � �
, for any insertion or deletion of a literal.

Although conditions 1 to 3 above are self-explanatory,
conditions 4 and 5 need further explanation.

Condition 4 simply says that for a literal to be included in
� �

, it must be derivable (using the rules of
�

) from already
“known” literals. Known literals are those literals of � that
remain in the database after updating, and the literal

�
being

inserted (in the case of insertion). For example, consider the
database:

� 
 � � � � 	 � � 
 � � � � � � � � � � � � � 	
and suppose that we want to insert

� � . Here � �
can be

� � � � � � � 	 �
Indeed, every literal from � �

can be derived from
� � � � � 
 � � � � 	 
 � � � � � 	

, where
�

is the literal of the initial
database that still belongs to the updated database, and

� �
is the inserted literal. For more details see [11] which first
introduced the notion of “justification”.

Concerning Condition 5, the change when going from � to
� �

can be measured using the symmetric difference: � � � � 

� � � � � 
 � � � � � � 


. Indeed, � � � �
is the set of literals that

are removed from � during updating (i.e. when going from �
to � �

), while � � � � is the set of literals that are added to � .
Thus � � � �

represents the total change during updating. It
follows that, to satisfy Condition 5, it suffices to require that
� � � �

be minimal (with respect to set inclusion), and this is
the approach taken by several authors [11] [4]. Similarly, in
[6] one requires that � � � � � � be minimal.

In this paper, we provide a measure of change which is
finer than symmetric difference, in the sense that minimal
change with respect to our measure implies minimality of
the symmetric difference. Roughly speaking, among the sets
� �

that satisfy conditions 1 to 4, and minimize � � � �
, our

measure chooses one that minimizes the difference � � � �
, i.e.

one that removes as few as possible among the literals of �
(or equivalently, one that keeps as many as possible of the
literals in � ). Let us see an example.

Example 3.1: Consider the database :
� 
 � � � � 	 � � 
 � � � � � � � � � � � � � � � � � � � � � 	
whose semantics is � 
 � � 
 � � � � 	

, and assume that we want
to insert � . Two possible semantics for the updated database
are: � � 
 � � � � � � � � � � � � � � � 	

and � � 
 � � � � 	
. Intuitively, � �

is obtained by just adding � to the database without removing
any literal of � , whereas � � is obtained by adding � , but
this time also removing � from � . Both � �

and � � satisfy
conditions 1 to 4, and moreover both minimize the symmetric
difference. However, of these two possible semantics, we
choose � �

because it preserves more literals of � than � �
does. �

We would like to emphasize that minimal change based
only on minimization of the symmetric difference does not
guarantee that as much as possible of the initial semantics is
preserved. Indeed, in the example above � � does not preserve
the maximum from the semantics of the initial database,
although it minimizes the symmetric difference.

In view of our previous discussion, we feel justified in
defining minimal change by giving priority to the minimization
of � � � �

over minimization of the symmetric difference � � � �
.

We do this by:
1) defining our measure of change to be the pair � � � � � � � � �

� 
 �
denoted by � � � � �

and
2) defining a partial order 
 between pairs of sets of literals

as follows: � � � � � � 
 
 � � � � � � 

iff � � � � �

or � � � 

� � � � � � � � � � 


.
Obviously, this partial order gives priority to minimality of the
first component of a pair, as required. We have the following
result.

Proposition 3.1: Let � be a family of sets of ground literals,
and � a fixed set of ground literals. Let � �

be a set of ground
literals from � such that � � � �

is minimal w.r.t. 
 among
all � � � with �  � . Then
(1) � � � �

is minimal w.r.t. set inclusion among all � � � with
�  �
(2) � � � �

is minimal w.r.t. set inclusion among all � � �
with �  � � �

Suppose now that the family � in the above proposition
is the family of all candidate semantics � for the updated
database. Then what Proposition 3.1 says is that minimality

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:9, 2007 

2846International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

9,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

77
8/

pd
f



of � � � with respect to � implies minimality of both, � � �
and � � � , with respect to set inclusion.

Given a database � with constraints
�

, and two sets of
ground literals � and

�
, we say that:

1) � satisfies a rule � � � � � � 
 � � � 
 � �
, if

� � 
 � � � 
 � � � �
implies

� � � .
2) � is a model of

�
, denoted � � � �

, if � is consistent
and � satisfies every rule in

�
.

3) � generates the literal
�

in
�

, denoted � � � �
(or � � �

if
�

is understood) if
� � � � .

4) � generates
�

in
�

, denoted � � � �
(or � � �

if
�

is understood), if � � � � � � � �
.

We are ready now to state formally the requirements that the
semantics of an updated database should satisfy.

Definition 3.1: - in-semantics. Let
�

be a ground literal, and
let � � 	 � 
 � 


be a consistent database with semantics � . A
set of ground literals � �

is called in-semantics for
�

and � if
the following requirements (called in-requirements) hold:

1)
� � � �

2) � �
is consistent

3) � �
satisfies the constraints of

�
4) 	 � � � � 
 � � � � � � �
5) under the requirements 1 to 4, � � � �

is minimal w.r.t.
� . �

The in-requirements 1-3 simply say that � �
is a model of

�
which contains

� �
The in-requirement 4 expresses the justifi-

cation condition for the elements of the updated semantics, as
discused earlier. The in-requirement 5 expresses minimality of
change, also discussed earlier.

Definition 3.2: - out-semantics. Let
�

be a ground literal,
and let � � 	 � 
 � 


be a consistent database with semantics
� . A set of ground literals � �

is called out-semantics for
�

and � if the following requirements (called out-requirements)
hold:

1)
� 
� � �

2) � �
is consistent

3) � �
satisfies the constraints from

�
4) 	 � � � � 
 � � �
5) under requirements given above, � � � �

is minimal w.r.t.
� . �

We denote by in-sem 	 � 
 � 
 � 

and out-sem 	 � 
 � 
 � 


the family
of in-semantics and the family of out-semantics respectively.
We shall prove that these families are nonempty, that is, there
always exists at least one in(out)-semantics, for any ground
literal

�
. In other words, any insertion or deletion is possible

to perform in a consistent database, and the result of the update
(even if non deterministic) is a consistent database.

First, let us give an equivalent characterization of in(out)-
semantics, using the set of literals that are still present in the
semantics � �

of the updated database.

Proposition 3.2: Let � be a database with semantics � . Let�
be a ground literal, � �

a set of ground literals satisfying the
in(out)-requirements 1-4 and 
 � � � � � . Then the following
statement holds:

� � � �
is minimal (w.r.t. � ) iff 
 is maximal (w.r.t. set

inclusion). �

Note that the above proposition provides a (equivalent) re-
formulation of in(out)-requirement 5. We shall refer to this
reformulation as in(out)-requirement 5’, i.e. we have:


 � � � � � is maximal (w.r.t. set inclusion).
We need the following lemma:

Lemma 3.1: Let � be a database with semantics � . If
�

is a
ground literal, � � �

and � � � are sets of ground literals satisfying
in(out)-requirements 1-4 and 
 � � � � � � � and 
 � � � � � � �
then the following statements hold:

1) � � � � � � � � � � � (in the case of insertion) and � � � � � � �
(in the case of deletion)

2) � � � � � � � � � � � iff 
 � � 
 �
3) � � � � � � � � � � � iff 
 � � 
 � . �
The following two propositions state how the families of

in- and out-semantics can be computed.

Proposition 3.3: Let � � 	 � 
 � 

be a consistent database

and
�

be a ground literal. Then we have in-sem 	 � 
 � 
 � 
 �
� � � � � � � � 
 maximal with 
 � � 


and � � � � � � consistent
� �

�
Proposition 3.4: Let � � 	 � 
 � 


be a consistent database
and

�
be a ground literal. Then we have out-sem 	 � 
 � 
 � 
 �

� � � � 
 maximal with 
 � � and
� 
� � � �

. �
Through the following results we justify the fact that in

a consistent database any update is accepted and can be
performed, i.e. there exist at least one in(out)-semantics and a
database with this semantics.

Proposition 3.5: For any consistent database � � 	 � 
 � 

and for any update � � 	 � 


or  " $ 	 � 

there exists at least one in-

semantics and at least one out-semantics, respectively. �
One interesting property of our update semantics is the so

called “monotonicity”, in the following sense: suppose that a
database � �

is included in a database � � (over the same set of
constraints), and thus that the semantics � �

of � �
is included

in the semantics � � of � � . Suppose now that we insert or
delete the same literal in � �

and in � � , and let � � �
be some

semantics of the updated databases obtained from � �
. Then

there exists a semantics � � � of the updated database obtained
from � � , such that � � �

is included in � � � .

Theorem 3.1: Let � �
and � � be two consistent databases

over the same set of constraints
�

, such that � � � � � ,
and let

�
be a ground literal. Then for any semantics

� � � � in(out)-sem 	 � 
 � � 
 � 

there exists a semantics � � � �

in(out)-sem 	 � 
 � � 
 � 

such that � � � � � � � . �

We conclude this section by a complexity result expressing
that, given any update, the set of all update semantics can be
computed in polynomial time w.r.t. the size of the set of stored
facts.

Proposition 3.6: If
�

is a literal and � � 	 � 
 � 

is a

database then the set of all in(out)-semantics for
�

and � is
computed in polynomial time w.r.t. the size of � . �

IV. DETERMINISTIC SETS OF CONSTRAINTS

In the previous section, we saw a method for inserting or
deleting a literal

�
in a database consisting of a set of literals

� and a (fixed) set of constraints
�

. Our method requires

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:9, 2007 

2847International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

9,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

77
8/

pd
f



that the semantics � �
of the updated database satisfies certain

conditions, called “in-requirements” in the case of insertion
(see Definition 3.1) and “out-requirements” in the case of
deletion (see Definition 3.2).

We have seen that, under the assumption that the initial
database is consistent, there is at least one semantics � �
satisfying the in-requirements, and at least one semantics � � �
satisfying the out-requirements (see Proposition 3.5). There-
fore, the insertion or the deletion of a literal is always possible,
but we may have non-determinism, i.e. we may have to choose
among many possible semantics � �

for the updated database.
Let us see an example.

Example 4.1: Let � � � � � � �
and

	 � � � � � � � �
.

Obviously, the semantics of this database is � � � � � � � � �
.

Suppose now that we want to insert the literal
� � . Then we

can show that the sets � � � � � � � � � �
and � � � � � � � � � �

both qualify as in-semantics, as they both satisfy the in-
requirements.

Intuitively � � �
corresponds to adding

� � to � and removing�
(in order to preserve the consistency), and � � � corresponds to

adding
� � to � and removing � . By the way, � � �

and � � � are
the only possible in-semantics, since there is no other maximal
subset � � of � � � � � � �

different than � � � � � � � � � � � �
and � � � � � � � � � � � �

and such that � � � � � � � � is consistent
(see Proposition 3.3). 	

In this section, we address the following problem: charac-
terize the sets of constraints

	
for which there is one and only

one semantics � �
for the updated database. We refer to such

sets of constraints
	

as deterministic sets of constraints.

Definition 4.1: A set of constraints
	

is called in(out)-
deterministic if for any consistent database 
 � � 	 �

and for any
ground literal � , there exists a unique in(out)-semantics.

	
is

called simply deterministic if it is both in-deterministic and
out-deterministic. 	

In order to characterize determinism, we associate each set
of constraints

	
with the following set:

� 
 � � � � � � �
minimal with

� � � � � � � � � � � � �
� � � � � � � s.t.

� � � � � � � � � �
Intuitively, each set

�
in � 
 � � is a minimal set of literals

that can generate inconsistency, using the rules of
	

. There-
fore, any superset of a set in � 
 � � has that same property. We
have the following result:

Theorem 4.1:
	

is in-deterministic iff every set in � 
 � �
has exactly two elements. 	

We characterize now the sets of constraints that are out-
deterministic. To this end, given any ground literal

�
, we define

the following set:� � � 
 � � � � 
 � � � � � � �
minimal with

� � � � �� � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � �
Intuitively, each set

�
in

� � � 
 � � � � 
 � �
is a minimal set

of literals that can generate
�

and that does not generate
inconsistency, using the rules of

	
.

Theorem 4.2:
	

is out-deterministic iff every set from� � � 
 � � � � 
 � �
is a singleton, for every ground literal

�
. 	

We conclude this section by a complexity result regarding
the decision problem of deterministic set of constraints.

Lemma 4.1: For any set of constraints
	

and literal
�

the
sets

� � � 
 � � � � 
 � �
and � 
 � � can be computed in polynomial

time w.r.t. the size of
	 � 	

Proposition 4.1: Let
	

be a set of constraints. The problem
whether

	
is deterministic can be decided in polynomial time

w.r.t. the size of
	

. 	

V. THE REDUCTION OF DETERMINISTIC SETS OF

CONSTRAINTS

In the previous section, we have characterized sets of
constraints with an important semantic property, namely, sets
of constraints for which there is only one semantics for the
updated database. We have called such sets deterministic.

In this section, we show that the deterministic sets of
constraints have also an important syntactic property, namely,
they can be reduced to sets of simpler constraints containing
exactly one literal in their body.

Definition 5.1: We call simple constraint any constraint of
the form

�
%

� �
, i.e. any constraint with exactly one literal in

the body. 	
In what follows, we first show that every set of simple

constraints is deterministic, and then we show a sort of
converse, namely, that every deterministic set of constraints
can be “reduced” to a set of simple constraints (modulo an
extension of the alphabet).

Theorem 5.1: Any set of simple constraints is deterministic.
	

To simplify terminology, we shall say “deterministic set”
instead of “deterministic set of constraints” and “simple set”
instead of “set of simple constraints”. We have just seen that
every simple set is a deterministic set (Theorem 5.1), but
obviously not every deterministic set is a simple set. However,
as we shall see, every deterministic set can be reduced to
a simple set with the “same behaviour”. First, let us see an
example.

Example 5.1: Consider the database � � � � � � � & �
with the

set of constraints:	 � � � � � � � � & �
� � � � � � & �

where
	

is not a simple set, and suppose that we want to
delete � . At first glance, this deletion looks non-deterministic,
as there are three possible solutions: (1) remove

�
, (2) remove

� , or (3) remove & .
But let us observe that these solutions have the following

side effects: (1) the first solution causes the removal of � and& (due to the second and third rule), (2) the second causes the
removal of & (due to the third rule), and (3) the third solution
has no side effects.

As we want to modify minimally the database, only the
third solution is acceptable, since it supposes only removing & ,
that anyway is required additionally by the first two solutions.
Intuitively, although

	
is not a simple set, it behaves exactly

as the following simple set:	 � � � � � & �
� � � � � � & �

So we expect
	

to be deterministic. Indeed, in order to check
this, we apply Theorems 4.1 4.2. One can prove that

� 
 � � � � � & � � � � � � & � � � � � � & � � � � � � � � � � � � � � � � � � � � � � � �
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� � �
and� � � � � 	 � 
 � � � � � � � � � � 
 � �

,� � � � � 	 � 
 � � � � � � � � � � � � � � 
 � �
,� � � � � 	 � 
 � � � � � � � � � � 
 � �

,� � � � � 	 � 
 � � � � � � � � �
, for every ground literal

� �� � � � � � � � �
�

In order to formalize the notion of “same behaviour” from
the previous example, we need some preliminary definitions
and notation.

Let
� �

and
� � be two sets of constraints. We say that

� �
implies

� � , denoted by
� � � � � � , if for any consistent set of

ground literals � , � � � � �
implies � � � � � . We say that� �

and
� � are equivalent, denoted by

� � � � � , if
� � � � � �

and
� � � � � �

. We denote by � � � � � � �
the set of all models

of
� �

. Clearly,
� � � � � � iff � � � � � � � � � � � � � � �

, and� � � � � iff � � � � � � � � � � � � � � �
For instance, in the previous example, the deterministic set�
is equivalent to the simple set

� �
, i.e.

� � � �
. This is not

true in general, as one can show that not every deterministic
set is equivalent to a simple set.

However, the idea here is to capture the behaviour of a
non-simple set using a simple one. That is, we reduce a set of
constraints to another set of a specific type (here, to a simple
set), whose behaviour we know.

From now on, every set of constraints
�

will be considered
together with a set of predicate symbols

� 
 such that all
literals appearing in

�
are constructed with predicates from� 
 . Additionally, all updates on any database with constraints�

concern literals constructed with predicates from
� 
 . If�

is a set of ground literals, we define the projection of
�

on a set of predicates � , denoted by
� �

� , to be the set of
all literals from

�
constructed with predicates from � . We

extend the projection operation to a family of sets � in a
natural way, namely � �

� � � � �
� � � � � � �

Let us now
define formally the reduction relation.

Definition 5.2: Let
� �

and
� � be two sets of constraints

with semantic operators �
�

and � � , and sets of predicate
symbols �

�
and � � , respectively, such that �

� � � � . We say
that

� �
reduces to

� � , denoted by
� � 	 � � , if � � � � � � � �

� � � � � � � �
�

�
. �

We have the following result:

Theorem 5.2: If
� � 	 � � then for every set of ground literals

� the following statements hold:

1) �
�

� is consistent iff � �� is consistent
2) if �

�
� and � �� are consistent, then �

�
� � � �� �

�
� � �

What the above theorem says is that a database � is
consistent w.r.t.

� �
iff it is consistent w.r.t.

� � , and that the
semantics w.r.t.

� �
can be obtained by projection on �

�
of

the semantics w.r.t.
� � .

Let us see now how the two sets of constraints behave w.r.t.
updates.

Theorem 5.3: Let
� �

,
� � be two sets of constraints such

that
� � 	 � � . Then for every set of ground literals � such that

� � � � � �
is consistent, and for every ground literal

�
constructed

with predicates from �
�
, the following statements hold:

1) in-sem � � � � � � � � � in-sem � � � � � � � � �
�

�

2) out-sem � � � � � � � � � out-sem � � � � � � � � �
�

�
. �

The above theorem states in fact that the two sets of constraints
have the same behaviour w.r.t. updates.

Theorem 5.4: For any deterministic set
� �

there exists a
simple set

� � computed in polynomial time w.r.t. the size of� �
such that

� � 	 � � . �
Theorems 5.2, 5.3 and 5.4 justify our claim that the be-

haviour of deterministic sets is entirely captured by simple
sets, that in turn form a proper subclass of the class of
deterministic sets.

VI. CONCLUDING REMARKS

We have introduced a logic-based framework for database
updating under constraints. We have defined the database se-
mantics and updated database semantics, and we have tackled
the problem of nondeterminism during updating. This nonde-
terminism appears while attempting to restore the database
integrity w.r.t. the set of constraints. We have focused on
semantic determinism, i.e. on the characterization of sets of
constraints for which there is (always) exactly one possible
semantics for the updated database. We have also seen that
every deterministic set of constraints can be reduced to a
set of simple constraints (which are easier to manage, both
conceptually and computationally) with the same behaviour
w.r.t. updates.

We have shown also that the complexity of computational
aspects and decision problems presented in our framework is
in each case polynomial time.
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