
Abstract—The importance of good requirements engineering is

well documented. Agile practices, promoting collaboration and

communications, facilitate the elicitation and management of volatile

requirements. However, current Agile practices work in a well-

defined environment. It is necessary to have a co-located customer.

With distributed development it is not always possible to realize this

co-location. In this environment a suitable process, possibly

supported by tools, is required to support changing requirements.

This paper introduces the issues of concern when managing

requirements in a distributed environment and describes work done at

the Software Technology Research Centre as part of the NOMAD

project.

Keywords—Agile, Distributed, Requirements Management, XP.

I. INTRODUCTION

any reports highlight the importance of good

requirements engineering (RE). McPhee [1] suggests

that requirements activities should account for 25% of

the total development effort. The Standish Group [2] survey

found that incomplete requirements (12.3%) and changing

requirements and specification (11.8%) were significant

contributors to project failure. Also, Taylor [3] reports that

70% of projects failed at the requirements definition stage and

80% also claimed that clear and detailed requirements were a

critical success criterion.

Recently Agile Methodologies (AMs) [4] have become

established as an approach for software development. A

survey conducted by Shine Technologies [5] highlighted that

92.8% of respondents felt AMs had made their team more

productive and 84% saw an increase in the quality of products

delivered. Williams et al [6] also highlights the potential

improvements that can be made by using Extreme

Programming (XP). Holz et al [7] describe Agile approaches

as methodologies that seek to reduce documentation overhead

while increasing informal communication between team

members. Although different approaches exist, they all

subscribe to the Agile Manifesto [8]. This promotes

communication and collaboration and the ability to respond to

Manuscript received January 11, 2005. Paul Prior is with the Software

Technology Research Centre, Dundalk, Co.Louth, IRE (phone: 353-

879665296, e-mail: paul.prior@dkit.ie).

Frank Keenan, is a lecturer in Software Development with Dundalk

Institute of Technology (DKIT) at Dundalk, Co.Louth IRE. He is also part of

the Software Technology Research Centre and the Irish Software Engineering

Research Consortium (ISERC). (e-mail: frank.keenan@dkit.ie).

change. However, greater customer participation is expected.

As AMs encourage a high degree of customer

collaboration, the impact of inconsistencies and

misinterpretations that can contribute to project failure is

decreased. However, teams often find themselves distributed

across many buildings, towns, continents or even time zones

[9][23]. Organizations using AMs need to adapt to this

situation [24]. Currently Agile practices work best in

environments that are co-located and although some work has

been done to support a distributed deployment [10][11]

challenges still exist.

The NOMAD research project involves three partners, the

Software Technology Research Centre (SToRC), the

Telecommunications Systems & Software Group (TSSG) and

the Institute of Art, Design and Technology in Dun Laoghaire

(IADT-DL). The purpose of the NOMAD project is to

develop wireless tools for use in a student environment. Two

sites worked as developers (SToRC and TSSG) and the third

acted as customer, thus providing an opportunity to develop a

knowledge sharing process solution for distributed

development. A trial development and deployment has taken

place in late 2003/early 2004 with a second trial scheduled for

early 2005.

This paper gives an overview of the RE and AMs adopted.

It further describes work conducted between February 2004

and January 2005 which describes one such distributed

process at work, resulting in the production of a Requirements

Management (RM) tool for distributed environments.

II. REQUIREMENTS ENGINEERING

RE can be described as the task of capturing, structuring,

and accurately representing user requirements so that they can

be correctly embodied in systems which meet those

requirements [12]. Traditionally the RE process consists of

five key stages [13]: Feasibility Study (determining the

validity of entering into a development cycle), Elicitation and

Analysis (dealing with the gathering and refining of

requirements), and Specification and Validation (specifying

the requirements in a readable format and ensuring their

credibility). It is essential that any approach to RE should

enhance a development teams ability to elicit the correct

requirements from the customer, manage these and in

collaboration develop the required product.

 RM is essential to successful RE. It is the process by which

a system to notify the people involved that the requirements

are being addressed is established [28]. It is concerned with

Requirements Management in a Distributed

Agile Environment

Paul Prior, Frank Keenan

M

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:1, No:4, 2007

98International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
co

no
m

ic
s

an
d

M
an

ag
em

en
t E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

4,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

72
2.

pd
f

ensuring the state of requirements is visible at all times and

that progress in dealing with these is apparent to both

customers and developers.

Tool support is often provided to assist RE activities.

Wieringa and Ebert [14] describe the most popular used today.

Some such as Analyst Pro [15], C.A.R.E [16] and DOORS

[17] are RE tools that provide features such as requirements

classification, traceability, configuration management and

analysis. Others, such as Reqtify [18] and RTM Workshop

[19] are RM tools and include features such as change

notification, source locking and impact analysis.

Tools used with AMs are lightweight and easily attainable.

Cockburn [20] describes some lightweight tools that can be

used; these include whiteboards, digital cameras, poster

sheets, index cards and post-it notes.

III. THE XP PLANNING GAME

XP [21] is one of the more widely adopted AMs and was

chosen as the basis for the NOMAD process. It is built on

well defined practices designed to reduce documentation to an

adequate amount while increasing customer feedback and

communication. Although it is recommended that all practices

be implemented, some are more relevant depending on the

working environment. The principle that most encapsulates

the elicitation and sharing of requirements is the Planning

Game. The metaphor of a Game is used for ease of

explanation, which can be described as follows.

A. Game

Each planning game has a goal, pieces, players and rules

much like a game of chess. It is important that each part

interacts successfully to get the best result.

1) Goal: The goal of the game is to put the maximum

amount of value into a requirement.

2) Pieces: The major playing piece in the game is a user

story described on an index card. Each requirement is

written down and has an associated business value, cost

and acceptance test.

3) Players: Each player has a role, however the most

common roles are that of developers, business or

customer, each has expert knowledge of their own domain.

B. Moves

The moves within the game are designed to obtain the best

result. The steps involved are as follows.

1) Write Story: A story although containing enough value

to assign a cost, is a commitment for further conversation

and is traditionally written on an index card [22].

2) Estimation: Developers estimate the difficulty of

stories. At this stage stories can be merged or split into

different stories, as business and the developers feel fit.

3) Commitment: The estimated stories are prioritized and

committed to an iteration. This can be driven by release

date or by the story itself.

4) Change Management: This is initiated if business

changes the value of a story, if a story is split, if

development has overcommitted on a story or a new or

temporary story is introduced. This would result in a re-

estimation of the story and therefore a re-commitment.

The Planning Game allows for the capture, storage and

exchange of knowledge. However, change management does

not solely take place within the planning game. As XP is built

on principles such as constant feedback it facilitates change

through flexible iterations and allows for the re-prioritization

of requirements based on changing customer preference. XP

also uses acceptance testing to validate requirements. If a

customer does not accept a requirement this can also result in

a re-estimation and evaluation of the requirement in question.

IV. THE NOMAD PROCESS

The process in use within NOMAD merges the Planning

Game with concepts of knowledge responsibility, RM and

constant communication. The eight main activities of this

process are as follows.

A. Feasibility Study

During this activity a brainstorming session takes place in

which knowledge, experience, ideas and preconceptions are

shared. An overview of the system in question in the form of a

system metaphor is generated.

B. Requirements Elicitation

Both developers and customers participate in this stage of

the process, with the customer defining acceptance tests for

each requirement specified in the iteration. This is a simple

paragraph explaining the minimum requirements that need to

be met before the requirement can be released. A combination

of prioritization and conversation is used to elicit, refine and

prioritize the requirements. A maximum of 10 requirements

are baselined at a high-level and these should be sufficient to

cover the project. The outputs from this stage are the

baselined high-level requirements.

C. Specification

The customer details the requirements via user stories and

conversation in the specification stage. This allows for the

knowledge to be organized in a manner suitable for

estimation. The outputs to this stage are the refined, specified

requirements.

D. Estimation

Each iteration is estimated by developers using a range of

techniques tailored for the particular project that is currently

being worked on. This estimation is forwarded to the customer

and it is they who ultimately give the iteration the go ahead. If

a change is made the iteration is re-estimated by development

and evaluated by the customer for re-scheduling. The output

to this stage is the estimated iteration.

E. Iteration

An iteration consists of the cyclic use of simple design,

using pen and paper, followed by test first development. The

customer may also wish to refine acceptance tests at this point.

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:1, No:4, 2007

99International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
co

no
m

ic
s

an
d

M
an

ag
em

en
t E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

4,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

72
2.

pd
f

The output from this stage is an operational prototype and

acceptance tests ready for inspection.

F. Release Planning

Upon completion of the iteration, the customer evaluates the

work to ensure it is consistent with that specified in the user

story and resulting acceptance test. If the developers have

been successful in their interpretation and management of the

knowledge then the code can go to integration, otherwise, it is

re-estimated and scheduled for another iteration. Therefore,

the output from this stage is a rejected or accepted iteration.

G. Integration

Integration of the accepted iteration takes place continuously

involving each iteration. This allows the customer to see the

project as it progresses and gives a visual indication to

progress. CVS [25] is used as a shared knowledge repository,

allowing both distributed teams to integrate their code

simultaneously while source control makes sure mutual

exclusion is ensured. The output from this stage is an

integrated project.

H. Release

When accepted by the customer the complete project is

tested and released. The output from this stage is a completed

product.

As well as these distinct stages, a constant stream of

communication is upheld from customers and developers

using common tools such as messenger [26] and forum based

discussion boards [27]. This line of communication is also

used for discussion between our partners and SToRC. This

insures a steady flow of knowledge between both distributed

teams throughout the project lifecycle.

V. PROCESS EVALUATION

Following the initial NOMAD trial a questionnaire and

interview session took place between the process team and the

various developers involved in the project. This was designed

as a basis to improve the process for the second trial.

 The feedback received was honest and useful with most

developers agreeing the process adopted had contributed

significantly to the overall success of the project. It was

determined that constant communication and share of

knowledge via messaging and forums dramatically increased

the prospect of delivering a product that the customer wants.

However, some felt that face-to-face contact would also be

needed as it generates a useful bond between team members.

In addition, a greater breakdown of roles would be interesting

as each customer or developer has specific knowledge in an

area they are involved in. It was also suggested that the

customer should be given some direction to spark interest or

to give an indication as to what can be achieved. This would

then allow the relevant knowledge to be extracted, eliminating

time and effort costs further on in the lifecycle.

Ultimately it was decided an integrated tooling platform

that tackled some of these issues would be most beneficial

VI. M.A.R.D.I

M.A.R.D.I. (Managing Agile Requirements in a Distributed

Development Environment) is an evolutionary prototype that

was developed to offer the customer and developers a RM tool

that is lightweight and visible yet encapsulates some of the

points highlighted above. The focus group in question was a

combination of distributed developers and the NOMAD

customer population (i.e. students at DKIT). With this in mind

M.A.R.D.I. needed to be easy to use, fully distributed,

accessible and have equal facilitation for both sets of users.

It was developed using JSP (Java Server Pages) and

JavaScript to ensure it could be fully distributed across the

Web. It uses an XML-based repository and includes

facilitation for the following.

1) Prioritized Requirements Overview: The initial screen

a user sees is the prioritized requirements, each with a

name and unique ID. From here both the customer and

developer has a complete view of the project.

2) Real Time Discussion: An overview of the

requirements being discussed can be found in the overview

page; however, a more detailed forum was developed for

U.I. discussion and bug reporting.

FIGURE I

M.A.R.D.I Discussion Forum

3) Requirements Locking: This allows a developer to

freeze a requirement if they are working on it. No other

developer can sign the requirement out or have access to

change it. It is designed to enforce a sense of responsibility

for the requirement and the knowledge it contains.

4) Change Management: Change in any project is

inevitable, but it is the management of this change that is

important. In M.A.R.D.I. change is user driven. It is the

responsibility of the developer who has the requirement

locked or the project manager to determine the feasibility

and repercussions of any change that is suggested.

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:1, No:4, 2007

100International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
co

no
m

ic
s

an
d

M
an

ag
em

en
t E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

4,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

72
2.

pd
f

5) Version Control: This involves a process by which a

requirement can be traced as it evolves throughout the

project. It is available to all users to the system and saves a

snapshot of a requirement each time a change is made.

FIGURE II

M.A.R.D.I Version Control

VII. CONCLUSIONS AND FUTURE WORK

This paper has introduced issues of concern when sharing

knowledge in a distributed development environment. It

presents an overview of the process adopted for the NOMAD

project. In particular it describes the M.A.R.D.I. prototype

tool that has been developed for managing requirements in

this environment. However, further research is needed into

overcoming the difficulties with sharing knowledge with

distributed teams. A second trial has been scheduled for early

2005 with results available in mid-2005.

REFERENCES

[1] C. McPhee, A. Eberlein (2002) Requirements Engineering for Time-to-

Market Projects, Proceedings of the 9th Annual IEEE International

Conference on the Engineering of Computer Based Systems

(ECBS2002), Lund, Sweden

[2] Standish Group International, Chaos Report, [Online], Available:

www.projectsmart.co.uk/docs/chaos_report.pdf, 1995

[3] A. Taylor (2000, Jan), “I.T Projects Sink or Swim”, The Computer

Bulletin, pp24-26

[4] M. Fowler (2003, Apr), The New Methodology, [Online] Available:

www.thoughtworks.com/us/library/newMethodology.pdf

[5] Shine Technologies, Agile Methodologies Survey, [Online], Available:

www.agilealliance.org/articles/reviews/

ShineTechnologies1/articles/AgileSurvey2003.pdf , 2003

[6] L. Williams, W. Krebs, L. Layman, A. Anton (2004), Towards a

Framework for Evaluating Extreme Programming, Proceedings of the

Empirical Assessment in Software Engineering (EASE), Edinburgh,

Scotland, Available:

http://collaboration.csc.ncsu.edu/laurie/publications.html

[7] H. Holz, F. Maurer: Knowledge Management Support for Distributed

Agile Software Processes. Advances in Learning Software

Organizations, 4th International Workshop, LSO 2002, Chicago, IL,

USA, August 6, 2002, Revised Papers. Lecture Notes in Computer

Science 2640, Springer, 2003

[8] K. Beck, M. Beedle, A. VanBennekum, A. Cockburn, W. Cunningham,

M. Fowler, J. Greening, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B.

Marick, R.C. Martin, S. Mellor, K. Schawber, J. Sutherland, D. Thomas,

Agile Manifesto, [Online] Available: www.agilemanifesto.org, 2001

[9] P. E. McMahon (2001, Nov), “Distributed Development: Insights,

Challenges and Solutions”, CrossTalk, pp4-9 , Available:

http://www.stsc.hill.af.mil/CrossTalk/2001.nov/mcmahon.asp

[10] F. Maurer, M. Sebastien, [Online] “Process Support for Distributed

Extreme Programming Teams”, Available: sern.ucalgary.ca/~milos/

papers/2002/MaurerMartel2002a.pdf , 2002

[11] M. Kircher, J. Preshant, L. D. Carsaro, D. Levine “Distributed Extreme

Programming”, eXtreme Programming and Flexible Processes in

Software Engineering, Xp2001, Villasimius, Sardinia, Italy, 2001

[12] www.Dictionary.com, [Online] ,

http://dictionary.reference.com/search?q=requirements+engineering&r=

67

[13] I. Sommerville ,“Software Engineering” (6th ed), Addison-Wesley

Professional, 2000, Available:

http://www.awprofessional.com/bookstore/product.asp?isbn=020139815

X&redir=1

[14] R. Wieringa,C. Ebert (2004, Mar/Apr), Practical Requirements

Engineering Solutions [Online] , IEEE Soft, pp16-18. Available:

http://csdl.computer.org/comp/mags/so/2004/02/s2toc.htm

[15] Analyst Pro, Available: http://www.analysttool.com

[16] C.A.R.E (Computer Aided Requirements Engineering), Available:

www.sophist.de

[17] DOORS (Dynamic Object Oriented Requirements System), Available:

www.telelogic.com

[18] Reqtify, Available: www.tni-valiosys.com

[19] RTM (Requirements and Traceability Management) Workshop,

Available: www.chipware.com

[20] A.Cockburn (2004, Nov), What the Agile Toolbox Contains, Humans

and Technology for Crosstalk, Crosstalk, pg4-7, Available:

http://www.stsc.hill.af.mil/crosstalk/2004/11/0411Cockburn.html

[21] K. Beck, “Extreme Programming Explained: Embrace Change” (1st ed) ,

Addison-Wesley Professional, 1999, Available:

http://www.awprofessional.com/titles/0-201-61641-6

[22] R. Jeffries (2001, Aug 30). “Essential XP: Card, Conversation,

Confirmation”, [Online], Available:

http://www.xprogramming.com/xpmag/expCardConversationConfirmati

on.htm

[23] J. D. Herbsleb, D. Moitra (2001, Mar/Apr), Global Software

Development [Online], IEEE Soft, pp16-20. Available:

http://csdl.computer.org/comp/mags/so/2001/02/s2toc.htm

[24] M. Summons (2004, May), Distributed Agile Development and the

Death of Distance, Sourcing and Vendor Relationships, Executive

Report Vol. 5, No 4. [Online]. Available:

http://www.thoughtworks.com/au/library/

[25] CVS (Concurrent Versioning System), Available:

http://www.gnu.org/software/cvs/

[26] Msn (Microsoft Network) Messenger, Available: www.weaddress.com

[27] MvnForum, Available: www.mvnforum.com

[28] T. Murphy (2003, Apr)., Mastering the Requirements of Requirements

Management: Application Delivery Strategies Integration &

Development Strategies, Meta Practice 2020

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:1, No:4, 2007

101International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
co

no
m

ic
s

an
d

M
an

ag
em

en
t E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

4,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

72
2.

pd
f

