J.S.C. Prentice

Abstract

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe an effective local error control algorithm for RK5GL3, which uses local extrapolation with an eighth-order Runge-Kutta method in tandem with RK5GL3, and a Hermite interpolating polynomial for solution estimation at the Gauss-Legendre quadrature nodes.

Keywords-RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, Hermite interpolating polynomial, initial value problem, local error.

I. Introduction

The $\mathrm{RK} r \mathrm{GL} m$ method [1] for solving

$$
\begin{equation*}
y^{\prime}=f(x, y) \quad y\left(x_{0}\right)=y_{0} \quad a \leqslant x \leqslant b \tag{1}
\end{equation*}
$$

is based on an explicit Runge-Kutta of order $r(\mathrm{RK} r)$ and m-point Gauss-Legendre quadrature (GLm). The method has a global error of order $r+1$, which is the same order as the local order of the underlying $\mathrm{RK} r$ method. In this paper we consider the particular method RK5GL3, and describe an effective algorithm for controlling the local error in RK5GL3.

II. Terminology and relevant concepts

In this section we describe terminology and concepts relevant to the paper, including a brief description of the $\mathrm{RK} r \mathrm{GL} m$ method.

A. Explicit Runge-Kutta methods

We denote an explicit RK method for solving (1) by

$$
\begin{equation*}
w_{i+1}=w_{i}+h_{i} F\left(x_{i}, w_{i}\right) \tag{2}
\end{equation*}
$$

where $h_{i} \doteqdot x_{i+1}-x_{i}$ is a stepsize, w_{i} denotes the numerical approximation to $y\left(x_{i}\right)$, and $F(x, y)$ is a function associated with the particular RK method (indeed, $F(x, y)$ could be regarded as the function that defines the method).

B. Local and global errors

We define the global error in a numerical solution at x_{i} by

$$
\begin{equation*}
\Delta_{i} \doteqdot w_{i}-y_{i} \tag{3}
\end{equation*}
$$

and the local error at x_{i} by

$$
\begin{equation*}
\varepsilon_{i+1} \doteqdot\left[y_{i}+h_{i} F\left(x_{i}, y_{i}\right)\right]-y_{i+1} \tag{4}
\end{equation*}
$$

In the above, y_{i} is the true solution at x_{i}. Note that the exact value y_{i} is used in the bracketed term in (4).

Note also that for the derivative $y^{\prime}=f(x, y)$ we have

$$
\begin{equation*}
f\left(x_{i}, w_{i}\right)=f\left(x_{i}, y_{i}+\Delta_{i}\right)=f\left(x_{i}, y_{i}\right)+\Delta_{i} f_{y}\left(x_{i}, \vartheta_{i}\right) \tag{5}
\end{equation*}
$$

where $\vartheta_{i} \in\left(y_{i}, y_{i}+\Delta_{i}\right)$, so that an error of Δ_{i} in w_{i} results in an error of $O\left(\Delta_{i}\right)$ in $f\left(x_{i}, w_{i}\right)$.

Justin Prentice is with the Department of Applied Mathematics, University of Johannesburg, South Africa, email: jprentice@uj.ac.za

Fig. 1. RKGL algorithm for the first two subintervals H_{1} and H_{2} on $[a, b]$.

C. Gauss-Legendre quadrature

Gauss-Legendre quadrature on $[u, v]$ with m nodes is given by [2]

$$
\begin{equation*}
\int_{u}^{v} f(x, y) d x=h \sum_{i=1}^{m} C_{i} f\left(x_{i}, y_{i}\right)+O\left(h^{2 m+1}\right) \tag{6}
\end{equation*}
$$

where the nodes x_{i} are the roots of the Legendre polynomial of degree m on $[u, v]$. Here, h is the average separation of the nodes on $[u, v]$, a notation we will adopt from now on, and the C_{i} are appropriate weights. For GL3, the roots of the 3rd degree Legendre polynomial on $[-1,1]$ are

$$
\begin{align*}
& \widetilde{x}_{1}=-0.77459666924148 \\
& \widetilde{x}_{2}=0 \tag{7}\\
& \widetilde{x}_{3}=0.77459666924148
\end{align*}
$$

and are mapped to corresponding nodes x_{i} on $[u, v]$ via

$$
\begin{equation*}
x_{i}=\frac{1}{2}\left[(v-u) \widetilde{x}_{i}+u+v\right] . \tag{8}
\end{equation*}
$$

Also, the average node separation on $[-1,1]$ is $1 / 2$, and so h on $[u, v]$ is given by

$$
\begin{equation*}
h=\frac{1}{2}\left(\frac{v-u}{2}\right) \tag{9}
\end{equation*}
$$

while the weights

$$
\begin{equation*}
C_{1}=\frac{10}{9}, \quad C_{2}=\frac{16}{9}, \quad C_{3}=\frac{10}{9} \tag{10}
\end{equation*}
$$

are constants on any interval of integration.

D. The RKrGLm algorithm

We briefly describe the general $\mathrm{RK} r \mathrm{GL} m$ algorithm on the interval $[a, b]$, with reference to Figure 1.

Subdivide $[a, b]$ into N subintervals H_{i}. At the RK nodes we use $\mathrm{RK} r$:

$$
\begin{equation*}
w_{i+1}=w_{i}+h_{i} F\left(x_{i}, w_{i}\right) \tag{11}
\end{equation*}
$$

At the GL nodes we use m-point GL quadrature: Vol:2, No:4, 2008 solutions at the nodes $\left\{x_{0}, \ldots, x_{3}\right\}$. Then, assuming x_{0}

$$
\begin{equation*}
w_{2 p}=w_{p}+h \sum_{i=1}^{m} C_{i} f\left(x_{i}, w_{i}\right) \tag{12}
\end{equation*}
$$

Note that $p \doteqdot m+1$.
The GL component is motivated by

$$
\begin{align*}
\int_{x_{p}}^{x_{2 p}} f(x, y) d x & =y_{2 p}-y_{p} \approx h \sum_{i=1}^{m} C_{i} f\left(x_{i}, y_{i}\right) \tag{13}\\
\Rightarrow y_{2 p} & \approx y_{p}+h \sum_{i=1}^{m} C_{i} f\left(x_{i}, y_{i}\right) . \tag{14}
\end{align*}
$$

Of course, in RK5GL3 we have $r=5, m=3$ and $p=4$ in the above. The RK r GL m algorithm has been shown to be consistent, convergent and zero-stable [1].

E. Local error at the GL nodes

The local error at the GL nodes is defined in a similar way to that for a one-step method:

$$
\begin{align*}
\int_{x_{p}}^{x_{2 p}} f(x, y) d x & =y_{\underbrace{}_{2 p}}^{p+m+1}-y_{p} \tag{15}\\
& =h \sum_{i=1}^{m} C_{i} f\left(x_{i}, y_{i}\right)+O\left(h^{2 m+1}\right) \tag{16}\\
\Rightarrow \varepsilon_{2 p} & =\underbrace{\left[y_{p}+h \sum_{i=p+1}^{p+m} C_{i} f\left(x_{i}, y_{i}\right)\right]}_{\text {exact values of } y(x)}-y_{2 p} \tag{17}\\
= & O\left(h^{2 m+1}\right) . \tag{18}
\end{align*}
$$

Note that in the upper limit of integration $x_{2 p}=x_{p+m+1}$. In RK5GL3, the local error at the GL nodes is $O\left(h^{7}\right)$.

F. Implementation of RK5GL3

There are a few points regarding the implementation of RK5GL3 that need to be discussed:

- If we merely sample the solutions at the GL nodes, treating the computations at the RK nodes as if they were the stages of an ordinary RK method, then RK5GL3 would be reduced to an inefficient one-step method. This is not the intention behind the development of RK5GL3; rather, RK5GL3 represents an attempt to improve the efficiency of RK5, simply by replacing the computation at every fourth node by a quadrature formula which does not require evaluation of any of the stages in the underlying RK5 method.
- Of course, it is clear from the above that on H_{1} the RK nodes are required to be consistent with the nodes necessary for GL quadrature. If, however, the RK nodes are located differently (perhaps due to a local error control mechanism, for example) then it is a simple matter to construct a Hermite interpolating polynomial of degree seven (which has order eight error) using the
maps to -1 and x_{3} maps to the Legendre polynomial root \widetilde{x}_{3} on $[-1,1]$, the position of the other nodes $\left\{x_{1}^{*}, x_{2}^{*}\right\}$ suitable for GL quadrature may be determined, and the Hermite polynomial may be used to find approximate solutions of order eight at these nodes, thus facilitating the GL component of RK5GL3. A similar process is carried out on the next subinterval H_{2}, and so on. Indeed, as will be seen, the Hermite polynomial discussed here will play an important part in our error control algorithm.

G. The Runge-Kutta methods used in the algorithm

The RK method used in RK5GL3 is an explicit fifth-order method due to Fehlberg [3], which we denote RK5. The explicit eighth-order method used as the tandem method for error estimation in our error control algorithm is also due to Fehlberg [4], [5], and is denoted RK8.

H. The Hermite interpolating polynomial

If the data $\left\{x_{i}, y_{i}, y_{i}^{\prime}: i=1, \ldots, m\right\}$ are available, then a polynomial $\mathcal{H}(x)$, of degree at most $2 m-1$, with the interpolatory properties

$$
\begin{equation*}
\mathcal{H}\left(x_{i}\right)=y_{i} \quad \mathcal{H}^{\prime}\left(x_{i}\right)=y_{i}^{\prime} \tag{19}
\end{equation*}
$$

for each i, may be constructed. If the nodes x_{i} are distinct, then $\mathcal{H}(x)$ is unique. This approximating polynomial is known as the Hermite interpolating polynomial [6], and has an approximation error given by

$$
\begin{equation*}
y(x)-\mathcal{H}(x)=\frac{y^{(2 m)}(\xi(x))}{(2 m)!} \prod_{i=1}^{m}\left(x-x_{i}\right)^{2} \tag{20}
\end{equation*}
$$

where $x_{1}<\xi(x)<x_{m}$. If h is the average separation of the nodes on $\left[x_{1}, x_{m}\right]$, it is possible to write $x-x_{i}=\sigma_{i} h$, where σ_{i} is a suitable constant, and hence

$$
\begin{equation*}
y(x)-\mathcal{H}(x)=O\left(h^{2 m}\right) . \tag{21}
\end{equation*}
$$

The algorithm for determining the coefficients of $\mathcal{H}(x)$ is linear, as in

$$
\begin{equation*}
\mathbf{c}=\mathbf{A}^{-1} \mathbf{b} \tag{22}
\end{equation*}
$$

where \mathbf{c} is a vector of the coefficients of $\mathcal{H}(x), \mathbf{A}$ is the relevant interpolation matrix, and \mathbf{b} is a vector containing y_{i} and y_{i}^{\prime}. The details of these terms need not concern us here; rather, if an error $O(\Delta)$ exists in each of y_{i} and y_{i}^{\prime}, then an error of $O(\Delta)$ will exist in each component of \mathbf{c}. Moreover, since $\mathcal{H}(x)$ is linear in its coefficients, then an error of $O(\Delta)$ will also exist in any computed value of $\mathcal{H}(x)$. Consequently, we may write

$$
\begin{equation*}
y(x)-\mathcal{H}(x)=O\left(h^{2 m}\right)+O(\Delta) \tag{23}
\end{equation*}
$$

where the $O(\Delta)$ term arises from errors in y_{i} and y_{i}^{\prime}. We have assumed, of course, that the errors in y_{i} and y_{i}^{\prime} are of the same order, which is the situation that we will encounter later.

III. LOCAL ERROR CONTROL IN RK5GL3 Vol:2, No:4, 2008 for for with RK5GL3. We remind the reader that RK5

A. The order of the tandem method

The idea behind the use of a tandem method is that it must be of sufficiently high order such that, relative to the approximate solution generated by RK5GL3, the tandem method yields a solution that may be assumed to be essentially exact. This solution is propagated in both RK5GL3 and the tandem method itself, and the difference between the two solutions is taken as an estimate of the local error in RK5GL3. This amounts to so-called local extrapolation and is not dissimilar in spirit to error estimation techniques employed using RungeKutta embedded pairs [7], [8].

To decide on an appropriate order for the tandem method we consider the local error at the GL nodes

$$
\begin{align*}
\varepsilon_{2 p}= & y_{p}+h \sum_{i=p+1}^{p+m} C_{i} f\left(x_{i}, y_{i}\right)-y_{2 p} \\
= & {\left[w_{p, t}-\Delta_{p, t}+h \sum_{i=p+1}^{p+m} C_{i} f\left(x_{i}, w_{i, t}-\Delta_{i, t}\right)\right] } \\
& -\left(w_{2 p, t}-\Delta_{2 p, t}\right) \tag{24}
\end{align*}
$$

where $w_{k, t}$ is the solution from the tandem method at x_{k}, and $\Delta_{k, t}$ is the global error in $w_{k, t}$. Expanding the term in the sum in a Taylor series gives

$$
\begin{align*}
\varepsilon_{2 p}= & w_{p, t}+h \sum_{i=p+1}^{p+m} C_{i} f\left(x_{i}, w_{i, t}\right)-w_{2 p, t} \\
& -\Delta_{p, t}+\Delta_{2 p, t} \\
& +h \sum_{i=p+1}^{p+m} C_{i} f_{y}\left(x_{i}, \zeta_{i, t}\right) \Delta_{i, t} \tag{25}
\end{align*}
$$

and so

$$
\begin{align*}
& w_{p, t}+h \sum_{i=p+1}^{p+m} C_{i} f\left(x_{i}, w_{i, t}\right)-w_{2 p, t} \\
= & \varepsilon_{2 p}+\Delta_{p, t}-\Delta_{2 p, t} \\
& -h \sum_{i=p+1}^{p+m} C_{i} f_{y}\left(x_{i}, \zeta_{i, t}\right) \Delta_{i, t} \tag{26}
\end{align*}
$$

The sum on the rhs is of higher order than $\Delta_{p, t}-\Delta_{2 p, t}$, because of the multiplication by h, and since we cannot expect, in general, that $\Delta_{p, t}-\Delta_{2 p, t}=0$, the term in parentheses must be $O\left(h^{q}\right)$, where q is the global order of the tandem method. Since $\varepsilon_{2 p}=O\left(h^{7}\right)$ in the RK5GL3 method, we require $q>7$ in order for

$$
\begin{equation*}
w_{p, t}+h \sum_{i=p+1}^{p+m} C_{i} f\left(x_{i}, w_{i, t}\right)-w_{2 p, t} \approx \varepsilon_{2 p} \tag{27}
\end{equation*}
$$

to be a good (and asymptotically $(h \rightarrow 0)$ correct) estimate for the local error in RK5GL3. The first two terms on the lhs of (27) arise from RK5GL3 with the tandem solution as input, while $w_{2 p, t}$ is the tandem solution at $x_{2 p}$.

The implication, then, is that the tandem method must have a global order of at least eight. Hence, we have chosen the Fehlberg method mentioned earlier (RK8) as the tandem
and RK8 used here are independent, and are not an embedded pair. There may be practical reasons relating to efficiency that could suggest the use of a suitable embedded pair, but we will address this issue at a later stage. We also acknowledge that our choice of q differs from conventional wisdom (which would choose $q=7$ so that the local order of the tandem method is eight), but it is clear from (26) that the propagation of the tandem solution requires the global order of the tandem method to be greater than the order of $\varepsilon_{2 p}$. Of course, at the RK nodes the local order is six, so the tandem method RK8 is more than suitable at these nodes.

B. The error control algorithm

We describe the error control algorithm on the first subinterval $H_{1}=\left[x_{0}(=a), x_{4}\right]$ (see figure 1). This process is repeated on subsequent subintervals.

Solutions $w_{1,5}$ and $w_{1,8}$ are obtained at x_{1} using RK5 and RK8, respectively. We assume

$$
\begin{equation*}
\left|w_{1,5}-y_{1}\right|=L_{1} h_{0}^{6} \approx\left|w_{1,5}-w_{1,8}\right| \tag{28}
\end{equation*}
$$

where $h_{0} \doteqdot x_{1}-x_{0}$ and L_{1} is a local error coefficient (we will discuss the choice of a value for h_{0} later). The exponent of six indicates the order of the local error in RK5. We then demand that

$$
\begin{align*}
\left|\frac{w_{1,5}-y_{1}}{y_{1}}\right| & \approx\left|\frac{w_{1,5}-w_{1,8}}{w_{1,8}}\right| \leqslant \varepsilon_{R} \tag{29}\\
\Rightarrow\left|w_{1,5}-w_{1,8}\right| & \leqslant \varepsilon_{R}\left|w_{1,8}\right| \tag{30}
\end{align*}
$$

where ε_{R} is a user-defined tolerance. If this inequality is violated we assume we can find a new stepsize h_{0}^{*} such that

$$
\begin{equation*}
L_{1}\left(h_{0}^{*}\right)^{6}=\varepsilon_{R}\left|w_{1,8}\right| \Rightarrow h_{0}^{*}=0.9\left(\frac{\varepsilon_{R}\left|w_{1,8}\right|}{L_{1}}\right)^{\frac{1}{6}} \tag{31}
\end{equation*}
$$

and then find new solutions $w_{1,5}$ and $w_{1,8}$ using h_{0}^{*}. The factor 0.9 in (31) is a 'safety factor' allowing for the fact that $w_{1,8}$ is not truly exact. To cater for the possibility $w_{1,8} \approx 0$ we actually demand

$$
\begin{equation*}
\left|w_{1,5}-w_{1,8}\right| \leqslant \max \left\{\varepsilon_{A}, \varepsilon_{R}\left|w_{1,8}\right|\right\} \tag{32}
\end{equation*}
$$

where ε_{A} is a user-defined 'absolute' tolerance. We then set $h_{1}=h_{0}^{*}$ and proceed to the node x_{2}, where the error control process is repeated, and similarly for x_{3}. The process of recalculating a solution using a new stepsize is known as a step rejection.

In the event that the condition in (32) is satisfied, we still calculate a new stepsize h_{0}^{*} (which would now be larger than h_{0}) and set $h_{1}=h_{0}^{*}$, on the assumption that if h_{0}^{*} satisfies (32) at x_{1}, then it will do so at x_{2} as well (however, we also place an upper limit on h_{0}^{*} of $2 h_{0}$, although the choice of the factor two here is somewhat arbitrary). In the worst-case scenario we would find that h_{1} is too large and a new, smaller value h_{1}^{*} must be used. The exception occurs when $\left|w_{1,5}-w_{1,8}\right|=0$. In this case we simply set $h_{1}=2 h_{0}$ and proceed to x_{2}.

The above is nothing more than well-known local relative error control in an explicit RK method using local extrapolation. It is at the GL node x_{4} that the algorithm deviates from the norm.

Once error control at x_{1}, x_{2} and x_{3} has been effected ${ }^{\vee}$ (V ifricich ${ }^{4}$, 2008 necessarily defines the positions of x_{1}, x_{2} and x_{3} due to stepsize modifications that may occur), the location of x_{4} must be determined such that the local relative error at x_{4} is less than $\max \left\{\varepsilon_{A}, \varepsilon_{R}\left|w_{4,8}\right|\right\}$. To this end, we utilize the map (8), demanding that $x_{0}(=u)$ corresponds to -1 and x_{3} corresponds to the Legendre polynomial root \widetilde{x}_{3} in (7). This allows $x_{4}(=v)$ to be found, where x_{4} corresponds to 1 , and new nodes x_{1}^{*} and x_{2}^{*} to be determined such that $\left\{x_{1}^{*}, x_{2}^{*}, x_{3}\right\}$ are consistent with the GL quadrature nodes on [x_{0}, x_{4}]. We seek to perform GL quadrature on $\left[x_{0}, x_{4}\right]$ using the nodes $\left\{x_{1}^{*}, x_{2}^{*}, x_{3}\right\}$; however, we do not have solutions $w_{1,8}^{*}$ and $w_{2,8}^{*}$ at x_{1}^{*} and x_{2}^{*}. Hence, we construct the Hermite interpolating polynomial $\mathcal{H}(x)$ on $\left[x_{0}, x_{3}\right]$ using the nodes $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ and the solutions that have been obtained at these nodes; of course, the derivative of $y(x)$ at these nodes is given by $f(x, y)$. We use the eighth-order solutions that are available, so that we expect the approximation error in $\mathcal{H}(x)$ to be $O\left(h^{8}\right)$, as shown in (5) and (23). The solutions at x_{1}^{*} and x_{2}^{*} are then obtained from $\mathcal{H}\left(x_{1}^{*}\right)$ and $\mathcal{H}\left(x_{2}^{*}\right)$. GL quadrature then gives w_{4} with local error $O\left(h^{7}\right)$, as per (17). The tandem method RK8 is used to find $w_{4,8}$, and $\left|w_{4}-w_{4,8}\right|$ is then used for error control: we know that the local error in w_{4} is $O\left(h^{7}\right)$, where h here is the average node separation on $\left[x_{0}, x_{4}\right]$; if the local error is too large then a new average node separation h^{*} is determined; using h^{*}, a new position for x_{4}, denoted x_{4}^{*}, is found from $x_{4}^{*}=x_{0}+4 h^{*}$; if $x_{4}^{*}>x_{3}$, we redefine the nodes $\left\{x_{1}^{*}, x_{2}^{*}, x_{3}\right\}$, find eighth-order solutions at these new nodes using $\mathcal{H}(x)$, and then find solutions at x_{4}^{*} using GL quadrature and RK8; if $x_{4}^{*} \leqslant x_{3}$, we reject the GL step since there is now no point in finding a solution at x_{4}^{*}. After all this, the node x_{4}^{*} or x_{3} (if $x_{4}^{*} \leqslant x_{3}$) defines the endpoint of the subinterval H_{1}; the stepsize h is set equal to the largest separation of the nodes on H_{1}, and the entire error control procedure is implemented on the next subinterval H_{2}. Note also that it is the eighth-order solution at the endpoint of H_{1} that is propagated in the RK solution at the next node.

C. Initial stepsize

To find a stepsize h_{0} to begin the calculation process, we assume that the local error coefficient $L_{1}=1$ and then find h_{0} from

$$
\begin{equation*}
h_{0}=\left(\max \left\{\varepsilon_{A}, \varepsilon_{R}\left|y_{0}\right|\right\}\right)^{\frac{1}{6}} . \tag{33}
\end{equation*}
$$

Solutions obtained with RK5 and RK8 using this stepsize then enable a new, possibly larger, h_{0} to be determined, and it is this new h_{0} that is used to find the solutions $w_{1,5}$ and $w_{1,8}$ at the node x_{1}.

D. Final node

We keep track of the nodes that evolve from the stepsize adjustments, until the end of the interval of integration b has been exceeded. We then backtrack to the node on $[a, b]$ closest to b (call it x_{f-1}), determine the stepsize $h_{f-1} \doteqdot b-x_{f-1}$, and then find $w_{b, 5}$ and $w_{b, 8}$, the numerical solutions at b using RK5 and RK8, with h_{f-1}, x_{f-1} and $w_{f-1,8}$ as input for both RK5 and RK8. This completes the error control procedure.

Our intention has been to develop an effective local error control algorithm for RK5GL3, and we believe that the abovementioned algorithm achieves this objective. However, we do acknowledge that our procedure is probably not as efficient as it could be. For example, it would be less computationally expensive to use an embedded RK pair instead of independent RK5 and RK8 methods. Such a pair, known as DOPRI853, does in fact exist, and is due to Dormand and Prince [9]. In our algorithm, RK5 is a six stage method, and RK8 is a 13 stage method, implying at least 19 stage evaluations at each RK node. DOPRI853, on the other hand, is a 12 stage method containing both fifth-order and eighth-order methods. This suggests a ratio of computational effort of $12 / 19=63 \%$, so that using DOPRI853 might require only about two-thirds of the effort of the tandem algorithm. Regrettably, at the time of writing, DOPRI853 had not been tested in this error control capacity.

Nevertheless, we will show in the next section by way of two numerical examples that our error control algorithm is certainly an effective one.

V. Numerical examples

By way of example, we solve

$$
\begin{equation*}
y^{\prime}=\frac{1}{1+x^{2}}-2 y^{2} \tag{34}
\end{equation*}
$$

on $[0,5]$ with $y(0)=0$, and

$$
\begin{equation*}
y^{\prime}=\frac{y}{4}\left(1-\frac{y}{20}\right) \tag{35}
\end{equation*}
$$

on $[0,30]$ with $y(0)=1$. The first of these has a unimodal solution on the indicated interval, and we will refer to it as IVP1. The second problem is one of the test problems used by Hull et al [10], and we will refer to it as IVP2. These problems have solutions

$$
\begin{array}{ll}
\text { IVP1: } & y(x)=\frac{x}{1+x^{2}} \\
\text { IVP2: } & y(x)=\frac{20}{1+19 e^{-x / 4}}
\end{array}
$$

In Table 1 we show the results of implementing our local error control algorithm in solving both test problems. The absolute tolerance ε_{A} was always 10^{-10}, except for IVP1 with $\varepsilon_{R}=$ 10^{-10}, for which $\varepsilon_{A}=10^{-12}$ was used.

Table 1: Performance data for error control algorithm applied to IVP1 and IVP2

IVP1				
ε_{R}	10^{-4}	10^{-6}	10^{-8}	10^{-10}
RK step rejections	2	2	0	2
GL step rejections	2	5	10	19
nodes	12	20	37	79
RKGL subintervals	4	6	12	25
IVP2	10^{-4}	10^{-6}	10^{-8}	10^{-10}
ε_{R}	2	2	4	5
RK step rejections	2	3	5	9
GL step rejections	2	10	39	87
nodes	10	19	11	24
RKGL subintervals	3	6		

In this table, RK step rejections is the number of Yililies ${ }^{2}$ a: 4 , 0008 smaller stepsize had to be determined at the RK nodes; GL step rejections is the number of times that $x_{4}^{*} \leqslant x_{3}$, as described in the previous section; nodes is the total number of nodes used on the interval of integration, including the initial node x_{0}; and RKGL subintervals is the total number of subintervals H used on the interval of integration. It is clear that as ε_{R} is decreased so the number of nodes and RKGL subintervals increases (consistent with a decreasing stepsize), and so there is more chance of step rejections. There are not many RK step rejections for either problem. When $\varepsilon_{R}=10^{-10}$ the GL step rejections for IVP1 are 19 out a possible 25 (almost 80%), but for IVP2 the GL step rejections number only about 38%). In both cases the GL step rejections arise as a result of relatively large local error coefficients at the GL nodes, which necessarily lead to relatively small values of h, the average node separation, so that the situation $x_{4}^{*} \leqslant x_{3}$ is quite likely to occur.

Figures 2 and 3 show the RK5GL3 local error for IVP1 and IVP2. The curve labelled tolerance in each figure is $\varepsilon_{R}\left|y_{i}\right|$, which is the upper limit placed on the local relative error.

Fig. 2. RKGL local error for IVP1, with $\varepsilon_{R}=10^{-6}$.
In figure 2 we have used $\varepsilon_{R}=10^{-6}$, and in figure 3 we have used $\varepsilon_{R}=10^{-8}$. It is clear that in both cases the tolerance has been satisfied, and the error control algorithm has been successful. In figure 4, for interest's sake, we show the stepsize variation as function of node index (\#) for these two problems

References

[1] J.S.C. Prentice, "The RKGL method for the numerical solution of initialvalue problems", Journal of Computational and Applied Mathematics, 213, 2 (2008) 477.
[2] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd ed., Pacific Grove: Brooks/Cole, 2002, pp492-498.
[3] E. Hairer, S.P. Norsett, and G. Wanner, Solving ordinary differential equations I: Nonstiff problems, Berlin: Springer-Verlag, 2000, p177.
[4] E. Hairer, S.P. Norsett, and G. Wanner, Solving ordinary differential equations I: Nonstiff problems, Berlin: Springer-Verlag, 2000, p180.
[5] J.C. Butcher, Numerical methods for ordinary differential equations, Chichester: Wiley, 2003, p192.
[6] R.L. Burden and J.D. Faires, Numerical analysis, 7th ed., Pacific Grove: Brooks/Cole, 2001, pp133-135.
[7] E. Hairer, S.P. Norsett, and G. Wanner, Solving ordinary differential equations I: Nonstiff problems, Berlin: Springer-Verlag, 2000, pp165 185.

Fig. 3. RKGL local error for IVP2, with $\varepsilon_{R}=10^{-8}$.

Fig. 4. Stepsize h vs node index (\#) for IVP1 and IVP2.
[8] J.C. Butcher, Numerical methods for ordinary differential equations, Chichester: Wiley, 2003, pp181-196.
[9] J.R. Dormand and P.J. Prince, "A family of embedded Runge-Kutta formulae", Journal of Computational and Applied Mathematics, 6 (1980) 19. Note that DOPRI853 is actually an embedded triple (8th-order, 5thorder and 3rd-order) but it is only the fifth- and eighth-order components that interest us here.
[10] T.E. Hull, W.H. Enright, B.M Fellen, and A.E. Sedgwick, "Comparing numerical methods for ordinary differential equations", SIAM Journal of Numerical Analysis, 9, 4 (1972) 603.

Justin Steven Calder Prentice is currently a Senior Lecturer in the Department of Applied Mathematics at the University of Johannesburg in South Africa. He holds doctoral degrees in both Physics and Applied Mathematics. The bulk of his research has been in the field of computational photovoltaics, and he has only recently turned his attention to numerical methods. His current interests are radial basis function approximation, and methods for initial value problems.

