
 

 

  
Abstract—The paper provides a numerical investigation of the 

entropy generation analysis due to natural convection in an inclined 
square porous cavity. The coupled equations of mass, momentum, 
energy and species conservation are solved using the Control Volume 
Finite-Element Method. Effect of medium permeability and 
inclination angle on entropy generation is analysed. It was found that 
according to the Darcy number and the porous thermal Raleigh 
number values, the entropy generation could be mainly due to heat 
transfer or to fluid friction irreversibility and that entropy generation 
reaches extremum values for specific inclination angles.    

 
Keywords—Porous media, entropy generation, convection, 

numerical method. 

I. INTRODUCTION 
HE fluids motion caused solely by temperature gradients, 
known as natural convection, occurs in many natural and 

industrial processes including wind, oceanic currents, 
movements within the Earth's mantle, in heating of homes, 
cooling of equipment, oil extraction, nuclear waste disposal, 
etc. because of its wide range of application, several studies 
dealing with natural convection due to thermal buoyancy 
forces have been reported during the last decades. Sen [1] 
investigated natural convection in a Brinkman porous 
rectangular cavity with differentially heated sidewalls. Laureat 
and Prasad [2] investigated the buoyancy effects on natural 
convection in a vertical enclosure using Brinkman-extended 
Darcy formulation. Natural convection with partial heating in 
a square cavity filled with porous media is was numerically 
investigated by Alam et al. [3] Selamat et al. [4] numerically 
studied natural convection in a square porous cavity using 
finite difference method. They found that the time taken to 
reach the steady state considerably depend on the Rayleigh 
number. Nader et al. [5] reported a numerical study about 
natural convection in air-filled 2D square enclosure heated 
with a constant source from below and cooled from above 
with variety of thermal boundary conditions at the top and 
sidewalls. The critical Rayleigh number at the onset of the 
natural convection in anisotropic horizontal porous layers with 
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high porosity was determined by Shiina and Hishida [6]. They 
showed that the critical Rayleigh number decreases with the 
increase of the Darcy number and inversely, with the decrease 
of the effective thermal diffusivity ratio. 

Natural convection includes the irreversible phenomena of 
heat transfer and viscous dissipation expressed by entropy 
generation that’s why its study was often relied to the second 
low analysis. Baytas [7, 8] numerically studied  the entropy 
generation in porous medium. He found that minimum of 
entropy generation is relied to the Rayleigh number and the 
enclosure inclination angle. Famouri and Hooman [9] 
numerically studied entropy generation in free convection in a 
partitioned cavity. Hidouri et al. [10, 11] investigated the 
influence of cros effects of Soret and Dufour on entropy 
generation in steady state of thermosolutal convection. 
Mukhopadhyay [12] carried out a numerical study about 
entropy generation in Two-dimensional steady state of natural 
convection, developed in a square enclosure heated by two 
discrete isoflux heat sources on the bottom wall. It was found 
that, for the studied case, heat transfer irreversibility 
predominates entropy generation due to the fluid friction. The 
dependence of entropy generation on the thermal boundary 
conditions of heated and cooled walls for the case of natural 
convection inside a porous enclosure was investigated by 
Zahmatkesh [13]. The focus of the present paper is on the 
numerical study of entropy generation encountered in natural 
convection in an inclined square porous cavity filled with a 
perfect gas mixture. The analysis was performed using Darcy 
– brinkman formulation with the Boussinesq approximation. 
Influence of medium permeability and inclination angle on the 
entropy generation due to heat transfer and viscous dissipation 
was investigated.   

II.  MATHEMATICAL FORMULATION 
The geometry considered consists of a square cavity filled 

with a perfect gas mixture saturating a porous medium (Fig. 
1). Left and right walls are submitted to different but uniform 
temperatures and concentrations. The two horizontal walls are 
insulated and adiabatic. The porous medium is isotropic, 
homogeneous and in thermodynamic equilibrium with the 
fluid. The flow in the cavity is laminar and two-dimensional . 
All physical properties of the fluid are assumed to be constant, 
except its density which satisfies the Boussinesq 
approximation such that: 

 
)]()(1[),( 000 CCTTTC CT −−−−= ββρρ               (1)  
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Tβ  and Cβ  are the thermal and the solutal expansion 

coefficients, respectively.  
Under the foregoing assumptions and description of the 

problem, using the Darcy-Brinkman model, the conservation 
equations of mass, momentum, energy and chemical species 
can be written in dimensionless form as follow. 
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The governing equations are obtained using the following 
dimensionless variables: 

W
Uu = ;
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a and W are scales of length and viscosity, 

respectively. 2 
ΔTagG 

3
T

rT
υ

β  
=  is the thermal  Grashof 

numbers, respectively and N is the buoyancy ratio. 2A
a
KD =  

is the Darcy number. Λ is the ratio of the viscosity in the 
Brinkman term to the fluid viscosity and Rk is the ratio of the 

thermophysical properties of the porous medium to the fluid 
thermal conductivity. The thermal porous Rayleigh number 

rTA
* GDPrRa = will be used in the analysis. 

The average heat transfer through the heated wall is given 
in dimensionless terms by Nusselt number as follow: 
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The study of different irreversibilities competition is given 

by Bejan number defined as: 
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The appropriate initial and boundary conditions of the 

problem are: 
For the hole space, at  
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For the considered problem, the volumetric entropy 

generation is therefore the sum of irreversibilities due to 
thermal gradients and viscous dissipation. Following Hidouri 
et al. [10] and Hooman et al. [14] local entropy generation is 
obtained by using the dimensionless variables previously 
listed and takes the following form: 

 

fNNN += θ                                   (10) 

 
Nθ and Nf  are the dimensionless local entropy generation 

due to thermal gradients and the fluid friction respectively 
they are obtained by using the dimensionless variables 
previously listed: 
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ϕ
== is the modified Darcy-Brinkman number,  

φ1, φ2 and φ3 are dimensionless irreversibility distribution 
ratios. They are given by: 
 

α 

hot 
side 

cold 
side 

adiabatic 

adiabatic 

Fig. 1 Mathematical model 
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The total dimensionless entropy generation is obtained by 

numerical integration, over the cavity volume A, of the 
dimensionless local entropy generation. It is given by: 

 

∫=
A

lTT dAss .                                  (16) 

III. NUMERICAL METHOD 
The purpose of using the numerical method is the 

determination of the temperature and the velocity scalar fields. 
From the known temperature, concentration and velocity 
fields, calculated at any time local entropy generation SlT is 
then obtained. The total entropy generation is calculated by 
numerical integration. The numerical used method consists on 
the Control Volume Finite-Element Method (CVFEM) of 
Saabas and Baliga [15]. Standard-staggered grids were 
employed in order to calculate and store the velocity 
components. The pressure is obtained by using the finite 
element method classical grids. The grid of size 31x31 and 
41x41 nodal points is found sufficiently enough to achieve the 
imposed global and local convergence criteria given 
respectively by: 
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Γ is the dependent variable, )  , ,v ,u ( φθΓ = .  
To test the accuracy of the present numerical study, the 

average values for the Nusselt number for natural convection 
are given in Table I and compared with those of  Younsi et al. 
[16] and Nithiarasu et al. [17]. It is seen that the results are in 
good agreement with those given by the literature. 

 
TABLE I 

AVERAGE NUSSELT NUMBER 
(N = 0,  Pr = 1, DA =10-2) 

Ra* Present study Ref [16] Ref [17] 

10 1.009 1.02 0.99 

100 1.72 1.71 1.68 

1000 4.26 4.26 4.24 

    

IV. RESULTS AND DISCUSSION 
The present paper aims to investigate the influence of the 

Darcy number as well as the inclination angle on entropy 
generation. The considered medium is a square inclined 
porous cavity filled with a binary perfect gas mixture 
characterized by Pr = 0.71 and Le = 1.2. The operating 
parameters are in the following ranges: 10-6 ≤ DA ≤ 10, 10 ≤ 
Ra* ≤ 103, the following values of irreversibility coefficients 
are considered:   ,5.01 =ϕ   ,10 2

2
−=ϕ . 10 6

3
−=ϕ  Due to 

large number of parameters, the porous medium proprieties 
are kept constant, they are given by: .1R  ,1  ,1Λ k === σ   

Fig. 2 illustrates the variation of Bejan number versus 
Darcy number for different values of thermal porous Raleigh 
number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results show that for higher values of Darcy number 
entropy generation is mainly due to heat transfer, when DA 
decreases, fluid friction irreversibility begins to dominate the 
heat transfer entropy generation. The tow irreversibilities have 
the same intensity (Be = 0.5) for a specific value of Darcy 
number “DAc” depending on the thermal porous Raleigh 
number. The DAc increases when Ra* is more important.    

In fact, at low Darcy numbers, the Darcy term increases 
which indicates that the balance between the viscous force and 
the buoyancy force in the boundary layer is progressively 
replaced by a Darcy term versus buoyancy term balance, 
causing the increase of the velocity of convective motion 
which explain the dominance of fluid friction irreversibility at 
lower value of Darcy number. This can be illustrated by Fig. 3 
showing the midsection stream function y-component at x = 
0.5 for different values of Darcy number. It’s seen that the 
flow velocity is intensified when the Darcy number decreases.  

 
 
 
 
 
 
 

Be 

DA 
Fig. 2 Bejan number versus Darcy number 
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The evolution of heat transfer, fluid friction irreversible and 
total entropy generation versus inclination angle of the cavity 
is depicted in Fig. 4 (a) and b for DA = 10-4 , Ra* = 100and for 

6
3 0.510φ −= and 6

3 10  φ −=  
 
 
 
 
 
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                          
                         
             
 
 
                         
                         
                         
 
 
 
 
 
 

Fig. 4 (b) entropy generation versus inclination (DA = 10-4, 
φ3=0,5.10-6) 

 
A maximum of fluid friction entropy generation is obtained 

for α = 45° in fact, the heat transfer buoyancy force for these 
orientations acts in the directions of both active and adiabatic 
walls, thus the velocity of convective motion increases. For 

the same reason the maximum of total entropy generation is 
reached at the same inclination. 

It’s observed that the fluid friction irreversibility 
predominates entropy generation due to heat transfer for α < 
90° if  φ3 = 0.5. 10-6 and for α < 150° if  φ3 = 10-6 . 

For the tow values of the irreversibility distribution ratio, a 
minimum value of entropy generation is obtained for α = 150° 
imposed by the absence of convection motion.  

To explain the entropy generation behaviour, the effect on 
the inclination angle on the heat transfer and on the viscous 
dissipation is shown in fig. 5 and fig. 6, respectively. 

                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
     Fig. 5 Average Nusselt number versus inclination angle (DA 

= 10-4, Ra* =100) 
                       

 It is to note that the maximum of heat exchanges is for an 
inclination of about 60° when the thermal forces acts in a 
direction recovering the four walls, the minimum of heat 
transfer is for 150°<α < 180° added to that, the velocity of 
convection motion is minimized, thus the Flow is converted 
into conduction regime for the same inclination. This is due to 
the reason that buoyancy is no longer available between these 
angles. 

The magnitude of the velocity is more important for α = 45° 
which explains the increase of fluid friction irreversibility and 
then the increase of total entropy generation.   

 

 
Fig. 6 velocity y-component at x = 0.5 (Ra* = 100, DA = 10-4) 

V. CONCLUSION 
Entropy generation for natural convection in inclined 

porous cavity has been studied numerically by using Control 

α = 30° 
α = 45° 
α = 90° 
α = 150° 

Fig. 3 Midsection stream function y- component 

a 

b 

c 

 d 
e 

a: DA = 1, b: DA = 10-1, c: DA = 10-2,d: DA 
= 10-3,e: DA = 10-4 

ST 
Nf 
Nθ 

α 
Fig. 4 (a) entropy generation versus inclination (DA = 10-4, 

φ3=0,5.10-6) 

ST 
Nf 
Nθ 
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α 

Nu 
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Volume Finite-Element Method, the influence of the Darcy 
number and the inclination of the cavity on entropy generation 
behaviour was evaluated. 

When fixing the thermal porous Raleigh number, it was 
obtained that, for high medium permeability, entropy 
generation is mainly due to heat transfer, when DA decreases, 
fluid friction irreversibility begins to dominate the heat 
transfer entropy generation. Total entropy generation reaches 
a maximum value for α = 45° and a minimum for α = 150°. A 
competition between fluid friction irreversibility and heat 
transfer irreversibility depending on the irreversibility 
distribution ratio is observed. 
 
Nomenclature: 
 
C: concentration (mol· m-3). 
DA: Darcy number. 
GrT: thermal Grashof number. 
k: thermal conductivity (W.m-1.K-1). 
K: permeability of the porous medium (m2). 
Nu: average Nusselt number 
P: pressure (kg·m-1.s-2). 
p: dimensionless pressure. 
Pr : Prandtl number. 
RK: thermal conductivity ratio (km/kf). 
Ra*: thermal porous Rayleigh number. 
T: temperature (K). 
t : time (s) 
u, v : dimensionless velocity components. 
U, V: velocity components along X, Y directions (m·s-1). 
x, y : dimensionless Coordinates. 
X, Y : Cartesian coordinates (m). 
W : characteristic Velocity (m·s-1). 
Greek symbols: 
α : thermal diffusivity (m2s-1). 

Tβ : thermal volumetric expansion coefficients (K-1). 

Cβ : solutal volumetric expansion coefficients (m3.mol-1). 

Λ : viscosity ratio ( ffeμ / μ ) 

ε : porosity of the medium. 
μ : fluid dynamic viscosity (kg.m-1.s-1). 

ffeμ : viscosity in the Brinkman model (kg.m-1.s-1). 

ν : kinematic viscosity (m2.s-1). 
φ : dimensionless concentration. 
ρ : fluid density (kg.m-3). 

σ : specific heat ratio [ mc)(ρ / fc)(ρ ]. 

θ : dimensionless temperature. 
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