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Abstract—Bootstrapping has gained popularity in differerstse
of hypotheses as an alternative in using asympdigicibution if one
is not sure of the distribution of the test statistnder a null
hypothesis. This method, in general, has two v&iar the
parametric and the nonparametric approaches. Howesies on
reliability of this method always arise in many hApgtions. This
paper addresses the issue on reliability by esfaibly a reliability
measure in terms of quantiles with respect to asgtiepdistribution,
when this is approximately correct. The test ofdtheses used is F-
test. The simulated results show that using nompetréc
bootstrapping in F-test gives better reliabilityanh parametric
bootstrapping with relatively higher degrees o&ftem.
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|. INTRODUCTION
THE fundamental notion of every hypothesis testads

assess the position of the computed value of a t
statistic, say, using the distribution off under the assumed

null hypothesis and perform an inference whetherehis
sufficient evidence not to reject the null relatit@ certain
margins [5]. Whilst many distributions of test gtts have
proved to be reliable when the underlying distiidtunder
the null hypothesis is known and can perform etests, there
are still cases in which the characteristics of tader
distribution are quite unclear or, in extreme casgnown. In
consequence, one will have to asgessa distribution that is
just approximately correct which may lead to umateie
results
Consider the observed values of a sample daa=

(y1, --,¥x) Which is an outcome of
identically distributed random varialfe= (Y;,...,Y,).

independent an

This approach is to generate a large number of latedl
values of the test statistic and compareith the generated
distribution. A particular method of this testings i
bootstrapping. Politis [8] has exemplified thate'tavailability
of valid nonparametric inference procedures basedres
sampling and/or sub-sampling has freed practit®ifiemm the
necessity of resorting to simplifying assumptionsts as
normality or linearity that may be misleading.” Agpgntly,
this method gains attractiveness on its applicatidttowever
it is, in general, neither as easy nor as reli@slaisers often
seem to believe [5].

This paper tries to deal with the issue on religbibf
bootstrapping, both parametric and nonparametrigests of
hypotheses relative to the established distribstidrom
asymptotic theory. The test to be considered is Rkest
twhich is widely used in many tests of hypotheses. |

rticular, the objectives of this paper are adovat: (a)

etermine the bias and varianceFdf whereF* is the set of
bootstrap replicates, from the two bootstrappingraaches;
(b) estimate the quantiles df* on different number of
iterations; (c) assess the reliability I6f relative to asymptotic
distribution in terms of quantiles and (d) make som
inferences based on the reliability percentageltesu

This paper is organized as follows. Section 2 dessrthe
tests of hypotheses and how these tests are pedorihe
principles behind bootstrapping are presented aticge 3. It
also illustrates parametric and nonparametric nuthdn
section 4, simulation methodology is given. SecBagirovides
results and discussions and the summary, concluaimh
(Eecommendation are given in Section 6.

Il. TESTINGA HYPOTHESIS

Assume thatT is an estimator, satisfying some established

properties, of a parametgr If Y is distributed to some known
probability distribution, then one is confident tase in
inference a valid asymptotic distribution ttfafollows under
a null hypothesis. Indeed, the suitable assumpiioK is the
ideal thing to do to get reliable results. Howevers evident
that in many applications, one can be fairly, eveot,
confident in a particular known distributidh has. Hence, in
this case, using standard asymptotic distributiornference
would give undesirable results [6].

Simulation based testing is a straightforward apphoto
address these limitations which makes advantagaeof/ery
fast development of computing.
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A statistical hypothesis test is a method of maldtagistical
decisions using sample data. This will be donedryputing
a statistic and examine its position to the thecekt
distribution it will follow if the null assumptiois true. There
are certain levels of significance a test can baluated by
which decisions can then be drawn whether or noejiect a
null hypothesis. Hypothesis testing defined in tgesneral
procedure follows a “frequentist” statistical infece
framework.

Common tests are one-sample & two-sample z-tests; o
sample & paired t-tests, pooled t-test, one proporz-test,
pooled z-test, two-sample F-test and many more.

The model of the F-test which will be used throughitis
paper is in a form

Ql/n
= Qz/m

)
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whereQ; = ?=1Xi2: Q; = ?;1 Yizn X~iidN(0,1) and 7 = 12{115?,1' =1,..,B 2)
Y~iidN(0,1). The variablesn and m are the degrees of g

freedom for X and Y respectively. AIso,Q1~)(2(n) and Furthermore, this empirical mean can be used topciben

the empirical bias which is defined as

Qz~x*(m). I
biasp =6*— 6,i=1,..,B 3)
[Il. BOOTSTRAPPING : - . : .
Finally, the empirical variance is denoted as thegn
A. Basic Concepts formula
Bootstrapping is a direct approach in generating a 2 1 wn (a2 =V .
probability distribution for a statistic that care lused for Ogx = g &i=1 (91 o ) i=1..B (4)
statistical inference [3]. Given a sample dapa= E. A Reliability Measure on Bootstrapping

(1, -, Yn), a statisticc can be computed. Bootstrap samples

denoted asy* = (¥4, ...,yn) are generated frony in
performing bootstrapping procedure. These bootsteapples

are then mapped to a functional form tofto produce the
bootstrap replicates denoted s The number of replicates sometimes unclear and vary among different writers.

depends on how many times the iteration is beingppaed Barlow and Proschan have defined mathematicalfjnale

in t_he_ process. In building. a distribution. of b(hqip generalized quantity which, when appropriately &gized,
replications, the nonparametric and parametric SIBIPING  yjj| yield most of the fundamental quantities ofiiability
are the two general approaches to use. theory [2]. Their definition is

There is a variety of labels in literature desigdato
problems on reliability. Such labels are relialjliavailability,
interval  availability, efficiency, effectiveness, tce
Unfortunately, the definitions given in the litane¢s are

B. Nonparametric Bootstrapping
. ) Assume a system whose state at time t is described by
Supposey = (y4, ..., ¥) is an outcome of independent and X(t) = (Xl(t), ...,Xn(t)), a  vector-valued random

identically distributed random variable =Y, ..., Y,. If the . ; : .
distribution function off, sayG, is unknown, then a sensible vanabl_e. X.,(t).’ being arandom_vanable, wll I?e govgr_ned
by a digribution function, F = (xq, ..., x,: t); explicitly,

estimate ofG is the empirical distribution function (EDF) F=(x . AT

' . ] = (x4, .., xp: t) equals the probability that X, (t) <
[7]. The ro.le of the 'EDF is theAfourEjat_lclm Sf norgraetric Xy, X (£) < x,. Now, corresponding to any state
bootstrapping. This is defined agu) = n™" XL, h(y; < u), x = (x4, .., X,), there is a gain, or payoff, g(x). The
where h(+) is an indicator function. Sincé places equal expected gain G(t) at time t will be the quantity of

probabilities on the original sampje then each element i : . _ _
is independently sampled at random from these dalizes. }nta?g,(: mayxbid;alful(ited fr;)n.wtg;(t) Eg(X(t))
e 1) =2 An — 1) sy An-

Therefore the simulated sampg, ..., Y, is a random sample :
. el P For the purpose of this paper, the bootstrap riéitiab
taken with replacement from the data. This simplidis asure relative to F asymptotic distributiéiih) maybe

special to the case of a homogenous sample but ma{ﬁzught of as a state at bootstrap iteratiorwhere R(b) =

extensions are straightforward [3]. . .

. . (1 - |f(aSY) - f(par/non)b'/f(asy)) X 100. The nOtatlonf(aSY)
C.Parametric Bootstrapping is denoted as the critical valuemt= 1 — p of F distribution.
Moreover, ify assumes a particular parametric model theM/hile fipar /nonys is the(B + 1)p*" ordered value of * from

exists an estimaté of the parametey of G. This estimate bootstrap empirical distribution, whepe= j/(B + 1) andf{;
serves as a substitute parametrically in the fitestiibution  denotes thg¢*" ordered value. It is also of interest to calculate
Gpar- Thus, G, Will be used in generating bootstrap samplethe E(R(b)), but this is not included in the scope of thisgrap
y*. For instance, consider as an outcome from a normal

distribution. G,,,me With parameterst and s?> generates IV. ALGORITHMS FORSIMULATION
y* = (¥1, ., ¥a) Which in turn used to compute the replicates. The following are the algorithms established todguthe
This approach is parametric bootstrapping. simulation process.
D.Empirical Mean, Bias and Variance of the Replications A. Algorithmin Constructing Baseline Quantiles based from
Getting an unbiased and consistent estimator isofrihe Asymptotic Distribution
main goals in statistical estimation. Consider agae random 1. Select desired degrees of freedom.
sampley = (y, .., y,). Estimating the parametér can be 2. Compute the critical values of f in the®®5" and 99’
done by calculating a statisficfrom the random sample. The quantiles. These computed values will serve as the
value of statistic from the random sample is desh@ist. For baseline values in computing for bootstrap’s réligb

every bootstrap sample, the same statistic caraloelated to
obtain the bootstrap replications of as 6 =T, =
t(X5, -, Xin), i=1,..,B. Hence, a straightforward
computation of the empirical mean of the replicagids by
using the formula
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B. Algorithmin Constructing Quantiles from Parametric
Bootstrapping

1.

o~

Draw random samples = (x4, ..., X;,) andy =

(Y1, > ) from N(0,1). These sets are assumed to

be the observed samples.

CalculateX, sZ,Y, sy and f. These values will serve

as observed statistics.
Samplex*? = (x?, ..., x;P) andy
1P, .., yaD) from N (X, s2) andN (Y, s2)

*b=

respectively. These sets are the bootstrap samples.

Computef*b. This value is a bootstrap replicate.
Repeat steps 3 through 4, B times.

CreateF ( f*), using the replicates, which is the
empirical distribution function of*.

Find f(?B+1)p) from F5 1 (p) whereB is chosen so
that(B + 1)p is an integer. This value is the
estimated" (B + 1) - quantiles.

C.Algorithmin Constructing Quantiles from
Nonparametric Bootstrapping

1.
2.

e

Use the samples obtained from B.1.
Sample the sets in step 1 with replacement to

getx™® = (x1®, ..., x3") andy™? = (¥1°, ..., ya")
Computef *2.

Repeat steps 2 through 3, B times.

CreateFz ( f*), using the replicates, which is the
empirical distribution function of*.

. Find f(?B+1)p) from F5 1 (p) whereB is chosen so

that(B + 1)p is an integer. This value is the
estimated" (B + 1) - quantiles.

D.Algorithmin Computing the Empirical Biases and
Variances of F*

1.

Usef andf*b to compute the empirical biaseskrsf

R — I 2
given in the formuldias = = f.

2. Usef*b to compute the empirical variancesFof
given in the formular? = b—iIZle (f*l -
zﬁ;lf*i)z

Y .
E. Algorithmin Computing the Reliability of Bootstrapping
Approaches
1. Denotef(4syy as the critical value @ = 1 — p of F

distribution andfpq; /nony» as the(B + 1)p*"

ordered value of * from bootstrap empirical
distribution.

. ComputeR (b) for parametric and nonparametric

bootstrapping.
R(b) = (1 - |f(asy) - f(;;ar/non)bl/f(asy)) X
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100 is the bootstrap reliability measurebah percent
with respect to F asymptotic distribution.

V.RESULTS ANDDISCUSSIONS
A. Empirical Bias of F*
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Fig. 1 Empirical biases ¢ for p=0.90 under parametric
bootstrapping

Fig. 1 shows the behavior of the biases undernpetric
bootstrapping. The bias ranges from -0.05 to 0.88 the
bootstrap replications are 19, 49, 99, 499 and 988.bias on
(n=20, m=20) departs from zero as b increases. r@gnto
this, bias on (n=20, m=40) approaches to zero iasreases.
Among the three, bias on (h=40, m=100) converge=to the
fastest as b increases. This implies that the hitffteedegrees
of freedom, parametric bootstrapping produces (sgoia
replicates as b increases.
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Fig. 2 Empirical biases ¢ for p=0.90 under nonparametric
bootstrapping

On the other hand, fig. 2 shows the empirical ksiasfe-*
for p=0.90 under nonparametric bootstrapping. Tékawior
of the biases of nonparametric bootstrapping is hmlilely
different from that of parametric bootstrapping.eTtiistance
from the bias on (n=20, m=20) to the bias of the twoups is
very wide. This implies that relatively lower degse of
freedom produces biased replicates at all valuesb.of
Evidently, still the fastest rate of convergencezémo is the
bias from (n=40, m=100). It gives biases almosbzen all
values of b.
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B. Empirical Variance of F*
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Fig. 3 Empirical variances & for p=0.9 under parametric
bootstrapping

Fig. 3 displays the empirical variances Ff for p=0.90
under parametric bootstrapping. The distances ofiraal
variances among the three dimensions of degreé®edom
are clearly wide. Each dimension reveals charastiesi of
consistency of the bootstrapping processes. Thibwtt of
consistency implies that if the variance approactregzero
then the estimator is consistent. The empiricalavaes on
(n=40, m=100) display consistency as the data p@nt near
to zero at all b.
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Fig. 4 Empirical variances & for p=0.90 under nonparametric

bootstrapping

Fig. 4 displays the empirical variances f for p=0.90
under nonparametric bootstrapping. Apparently,distances
of the empirical variances from (n=20, m=20) to Z0F

m=40) and (n=40, m=100) are wider compare to th

parametric bootstrapping counterpart. When b=4%iecal

variances of (n=20, m=40) and (n=40, m=100) areelwhile
the other values of b maintain a distance from emuth the
other points. Nevertheless, empirical variances (wf40,

m=100) are nearer to zero at all b than its coparér Hence,
nonparametric bootstrapping gives favorable resuits
consistency.
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C.Empirical Quantile of F*
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Fig. 5 Empirical quantiles df* versus f quantile from asymptotic
distribution for p=0.90 at n=20 and m=20

The graphs of the quantiles Bf seem to have an equal
level with respect to the critical valUebased from thd-
distribution as shown in fig. 5. Clearly, the enngat quantiles
from both bootstrapping approaches do not convergbef
critical value at all b. This means that the boafging
processes do not give good estimators of the dxaicantile.
Thef critical value is referred to as the solid lindigures 5, 6
&7.
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b
i

2.0 ~-@l--nonparametric

—de—f critical valuz

18 48 99 409 999

Fig. 6 Empirical quantiles df* versus f quantile from asymptotic
distribution for p=0.90 at n=20 and m=40

Contrary to fig. 5, fig. 6 gives a different viewn ahe
empirical quantiles approaching to the baselirfe
Nonparametric  bootstrapping  outperforms  parametric
gootstrapping in terms of giving the right quarttikelative to
baselinef. Although there is a “burst” at b=49, nonparaneetri
bootstrapping can give quantiles close to basdlireven at
b=19.
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Fig. 7 Empirical quantiles d&&* versus f quantile from asymptotic
distribution for p=0.90 at n=40 and m=100

Fig. 7 displays a surprising result. Parametriotstwapping

is very slow in converging td critical value even the
relatively high.

dimension of degrees of freedom is
Nonparametric bootstrapping maintains its clos¢adise, for
all b, from thef critical value.

D.Reliability Measure

RELIABILITY
wn
=

W parametric

B -1 T

19 49 99 499 999

B
Fig. 8 Reliability measures for p=0.90 at n=20 and¢20

Fig. 8 shows the reliability measures with rangarfrO to
100 in percent. Should there be a negative reifgbileasure,
it simply implies that there is a wide differencetween thd
guantile from asymptotic distribution arfd quantile from
bootstrapping. Hence, the reliability in this casenot good.
All of the measures on both approaches are less fiftg
percent. Bootstrapping at relatively lower dimensiof

Moreover, fig. 9 shows the reliability measures e0.90
at n=20 and m=40. All of the reliability measurese a
approaching to 100. Congruent to their variancessistency,
these reliability measures coincide with their Hssat all b.
Nonparametric bootstrapping gives higher reliapifiteasures
compared to parametric bootstrapping where almbsif she
measures are above 90.

RELIABILITY

 Eparametric

| Enonparametric

19 48 99 498 999

]

Fig. 10 Reliability measures for p=0.90 at n=40 amdl00

Lastly, in fig. 10, there is a slight change of thvels of the
measures under both approaches. For instanceglibbility
measure under nonparametric bootstrapping at nI2d a
m=40 with b=999 is 99.48 while at n=40 and m=100dcs to
91.65. Further, the reliability measure under pataim
bootstrapping at n=20 and m=40 with b=999 is 9Ivé8e at
n=40 and m=100 lowers to 86.23. In general, nonpatac
bootstrapping performs well in this case at all b.

VL.

Bootstrapping has gained popularity in differenstseof
hypotheses as an alternative in using asymptasicilolution if
one is not sure of the test statistic’s distribatilmder a null
hypothesis. This method, in general, has two vésianthe
parametric and the nonparametric approaches. Haweve
issues on reliability of this method always arise many
applications.

This paper addresses the issue on reliability bgtdishing
reliability measure in terms of quantiles with resp to
asymptotic distribution when this is approximate&lgrrect.

SUMMARY , CONCLUSION AND RECOMMENDATION

degrees of freedom does not give a satisfactoryltres The two bootstrapping variants are then investijate their

Parametric bootstrapping performs better than n@mpetric
bootstrapping in this case.
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Fig. 9 Reliability measures for p=0.90 at n=20 anc0
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respective reliability measures. Whereas therepapers, for
example [6], who claimed that parametric bootstiagp
performs well in many applications, this paper stdhat the
claim is not true in all cases. Parallel to thig,Highlights that
“the performance of parametric and nonparametric
bootstrapping are the same if the parameter ofdstdas the
mean. Conversely, for the variance, the bootstsijation
depends on the sample kurtosis of the data.” Spaltif, the
bootstrapping reliability measures of both apprescbn F-
test, where the chi square random numbers came Ni@1),
vary depending on empirical biases, variances, néxtd
degrees of freedom and iterations.

In the case where the degrees of freedom are nad0 a
m=20 corresponding to the chi square random numbers
numerator and denominator, respectively, the riiipb
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measures are not satisfactory. For n=20 and m=4th b
approaches give above 50 percent reliability messwmong
the two approaches, nonparametric bootstrappindonpes
better than parametric bootstrapping in terms dglvdity.
This result is also evident when n=40 and m=10& 3jread
of the empirical biases and variances, in this kitmn,
influences the reliability measures. The consistenesult
from empirical variances gives satisfactory resubs
reliability measures at all b. Relatively highergoees of
freedom improve the reliability measures which cnge to
100 percent.

Using nonparametric bootstrapping in F-test givested
reliability, in this paper, than parametric boasping with
relatively higher degrees of freedom.

Furthermore, it is recommended to extend this sttaly
other tests of hypotheses, include different noapetric
bootstrapping approaches in investigating religbiland
explore reliability measures on dependent data.
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