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Abstract—Malaria is by far the world’s most persistent tropical
parasitic disease and is endemic to tropical areas where the climatic
and weather conditions allow continuous breeding of the mosquitoes
that spread malaria. A mathematical model for the transmission of
malaria with prophylaxis prevention is analyzed. The stability anal-
ysis of the equilibria is presented with the aim of finding threshold
conditions under which malaria clears or persists in the human
population. Our results suggest that eradication of mosquitoes and
prophylaxis prevention can significantly reduce the malaria burden
on the human population.
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I. INTRODUCTION

Infectious diseases such as malaria, AIDS and cholera
continue to claim millions of lives around the world [1]. Global
eradication programmes of these infectious diseases have
been implemented for many years with some considerable
success [2]. Malaria is by far the world’s most persistent
tropical parasitic disease, with annual estimates of clinical
cases ranging from 300 to 500 million, with 86% being in
Africa. In Southern Africa, out of an estimated population of
145 million, about 92 million people live in malarious areas
[3]. Long term solutions to combating some of these diseases
have eluded researchers, because some of these diseases
have no cure. Malaria, an infection of the red blood cells
caused by Plasmodium, is spread by the bite of an infected
female anopheles mosquito and is endemic to tropical areas
where the climatic and weather conditions allow continuous
breeding of the mosquito. For instance, temperature influences
anopheline mosquito feeding intervals, population density and
the reproductive potential of the Plasmodium parasite [4].
There is no vaccine that can provide permanent immunity
against malaria. However drugs can be taken in advance before
entering a malaria high-risk area to prevent or reduce the
possibility of infection. No drug therapy has been found to be
completely effective in preventing the infection. Moreover the
drug therapy depends on which type of malaria an individual
has. Many factors have influenced the resurgence and spread
of malaria in recent years. These include mosquito resistance
to the usual insecticides, resistance of some parasite strains to
the commonly used anti malaria drugs and economic factors
that influence the financing of malaria control operations. Most
malaria high-risk areas are located in developing countries
where (a), the level of education in generally low and (b),
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drugs can be purchased without prescriptions. A combination
of (a) and (b) generally results in maladministration of the
drugs. In particular, Southern Africa is prone to malaria
epidemics and the disease is a major cause of mortality with
an estimated 200 000 deaths occurring annually. Out of the
approximated 139 million people living in Southern Africa,
63% live in malarious areas[5].

A number of studies modeling the effects of vaccination as
a disease control mechanism have been carried out by many
authors [6], [7], [8]. Kribs-Zaleta and Velasco-Hernandez [8]
considered a simple vaccination model in which they found
that vaccination may fail to achieve the desired objective of
eradicating the epidemic. This conclusion is supported by
Blower and Mclean [9] and by Hadeler and Castillo [10].
In these studies, the basic reproductive number, R0, plays an
important role in determining whether a disease can persist or
clear in a population. If R0 < 1 the disease can not invade the
population and if R0 > 1 invasion is always possible and in
many cases ending up with the establishment of an endemic
disease in steady state.

In a situation where, several strains of the malaria parasite
exist, climate changes favor malaria transmission and drug
resistance is common, we ask the question, “what is the role
played by prophylaxis prevention in malaria control?” We ask
a further question,“what is the effect of loss of immunity on the
dynamics of the disease?” Particularily, we want to investigate
how the use of preventive drugs affects the dynamics of the
disease. The model presented in this paper is an SVIRS model
with vectorial transmission. Studies of mathematical models of
vector transmitted diseases, especially those involving diseases
transmitted by mosquitoes, have been considered in [11],
[12], [13]. We formulate a host-vector model that treats in
a qualitative and quantitative manner the main features of the
transmission process. We note that R0 is a threshold parameter
for the local stability of the disease free equilibrium point and
we apply the center manifold theory to determine the existence
and stability of the endemic equilibria near R0.

This paper is arranged as follows; we give the model formu-
lation in the Section II. The model analysis which includes a
derivation of the basic reproduction number, stability analysis
of the disease free equilibrium point and the endemic equilib-
rium point is given in Section III. Numerical results are given
in Section IV and the discussion and conclusion is Section V.

World Academy of Science, Engineering and Technology
International Journal of Medical and Health Sciences

 Vol:2, No:3, 2008 

79International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ed

ic
al

 a
nd

 H
ea

lth
 S

ci
en

ce
s 

V
ol

:2
, N

o:
3,

 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/8
10

9.
pd

f



II. MODEL FORMULATION

The model consists of six ordinary differential equations
which specify the rate of change of four categories of indi-
viduals in the human population and two categories of the
vector population over time. The human population consists
of a class susceptible individuals (S), a class of individuals
under prophylaxis prevention (V ), a class infected individuals
(I) and a class of individuals who recover with temporary
immunity (R), while the vector population consists of a
class of susceptible mosquitoes (Sv) and a class of infected
mosquitoes (Iv).

Suppose the human population NH (where NH = S+V +I+
R) and the vector population Nv (where Nv = Sv + Iv) have
constant mortality rates μ and ν respectively. The mortality
rate of the vector population is a sum of the natural and
induced (for example by the use of pesticides) mortality
rates. A proportion ε of the population is under chemotherapy
(i.e given malaria prevention drugs) while (1 − ε) are not.
Furthermore, therapy only reduces the probability of infection
when exposed to pathogens, i.e it offers a degree of protection
denoted ψ with (1 − ψ) measuring the protection failure of
the therapy, so that ψ = 0 means the therapy is completely
ineffective in preventing infection, while ψ = 1 means the
therapy is very effective i.e no individual under therapy will
be infected. We let β1, β2 and β3 be the effective contacts
between susceptible individuals and vectors, individuals under
prophylaxis prevention and vectors and susceptible vectors and
infected individuals respectively. The effective contact rate
between the human and vector populations may be defined
as the average number of contacts per given time that will
lead to the infection of one population if the other population
is infectious. It is taken to be the product of the number of
bites per vector per host per unit time, the proportion of bites
that lead to an infection and the ratio of the vector numbers
to the host numbers [14]. Even though the human population
under prophylaxis prevention can still be infected and become
infections, it will be reasonable to assume that β1 > β2. The
prophylaxis prevention immunity wanes at a rate θ and thus
the average time of prevention is 1

θ . We assume a recovery
rate γ for infected individuals who loose immunity at a rate
σ. The dynamics of the disease is modelled by the following
system of differential equations.

Ṡ(t) = μ(1 − ε)NH − μS(t) − β1S(t)
Iv(t)

Nv
+ θV (t) + σR,

V̇ (t) = μεNH − (1 − ψ)β2V (t)
Iv(t)

Nv
− (μ + θ)V (t)

İ(t) = β1S(t)
Iv(t)

Nv
+ (1 − ψ)β2V (t)

Iv(t)

Nv
− (γ + μ)I(t),

Ṙ(t) = γI(t) − (μ + σ)R(t) (1)

Ṡv(t) = νNv − νSv − β3Sv(t)
I(t)

NH

İv(t) = β3Sv(t)
I(t)

NH
− νIv(t).

All parameters in the model are positive. Introducing the

following fractions s =
S(t)
NH

, v =
V (t)
NH

, i =
I(t)
NH

,

r =
R(t)
NH

, sv =
Sv(t)
Nv

and iv =
Iv(t)
Nv

and using the relations

r = 1 − v − i− s and sv = 1 − iv system (1) reduces to

ṡ = π − (μ+ σ)s− β1siv + (θ − σ)v − σi, (2)
v̇ = με− (1 − ψ)β2viv − (μ+ θ)v, (3)
i̇ = β1siv + (1 − ψ)β2viv − (γ + μ)i, (4)
i̇v = β3i(1 − iv) − νiv. (5)

where π = μ(1 − ε) + σ, in the region

Ω = {(s, v, i, iv)| 0 ≤ s+ v + i ≤ 1, 0 ≤ iv ≤ 1}.
The vector field of system (2) - (5) on the boundary of Ω
does not point to the exterior of Ω, the solution of the system
remains in Ω for all t > 0 and thus the problem is well posed
and biologically meaningful. The disease free equilibrium,
DFE, point for system (2) - (5) is given by E0 = (1−φ, φ, 0, 0)
and is determined in Subsection III-B.

III. MODEL ANALYSIS

A. The reproduction number

We arrange the equations of system (2) - (5)) beginning
with the infectives and use the method given in [15] to
determine the basic reproductive number. The method is a
direct application of lemma 1 in [15]. The decomposition of
the model into components P and Q leads to a system of the
form Ẋ = P −Q where

P =

⎛
⎜⎜⎝

β1siv + (1 − ψ)β2viv
β3i(1 − iv)

0
0

⎞
⎟⎟⎠ ,

Q =

⎛
⎜⎜⎝

(γ + μ)i
νiv

β1siv + (μ+ σ)s+ σi− (θ − σ)v − π
(1 − ψ)β2viv + (μ+ θ)v − με

⎞
⎟⎟⎠

and X = (i, iv, s, v)T . Since the infected compartments are
i and iv , at the disease free equilibrium point we define

P =
[
∂Pi

∂xj

]
and Q =

[
∂Qi

∂xj

]
for 1 ≤ i, j ≤ 2

giving

P =

⎛
⎝ 0 β1(1 − φ) + (1 − ψ)β2φ

β3 0

⎞
⎠ , and

Q =

⎛
⎝ (γ + μ) 0

0 ν

⎞
⎠ where φ = με

μ+θ .

From this expression for φ, we note that φ = με
μ+θ = θ

μ+θ
με
θ .

με
θ represents the number of individuals successfully protected

by chemoprevention with probability θ
μ+θ .

Note that P is nonnegative, Q is a nonsingular M -matrix,
its inverse, Q−1 is nonnegative and PQ−1 is nonnegative.
According to [16], PQ−1 is the next generation matrix and
R0 is the spectral radius of PQ−1. In this case, if

A = PQ−1 =

⎛
⎝ 0 1

ν (β1(1 − φ) + (1 − ψ)β2φ)

β3
μ+γ 0

⎞
⎠

then, the eigenvalues of A are given by

λ1,2 = ±
√
β3(β1(1 − φ) + (1 − ψ)β2φ)

ν(γ + μ)
.
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Hence the effective reproductive number is given by

R =

√
β3(β1(1 − φ) + (1 − ψ)β2φ)

ν(γ + μ)
=

√
Rv ·Rh,

where Rv = β3
ν , and

Rh = (1 − φ)R1 + φ(1 − ψ)R2,

with R1 = β1
μ+γ and R2 = β2

μ+γ .

The geometric mean of the product RvRh, defines the mean
number of secondary cases generated by a single case of an
infection by an infectious mosquito or human being during
their infectious period, in a susceptible population in which
prophylaxis prevention is in use. Close to the DFE point, each
infected vector produces Rh newly infected individuals over
its expected infectious period and each infected individuals
produces Rv newly infected mosquitoes during the period of
infectiousness. The reproduction number with a square root
is due to the two generations required for an infection to be
reproduced [15]. The two terms of Rh measure the influence of
individuals not under prophylaxis prevention and those under
prophylaxis prevention respectively.

By setting R = 1, the critical prophylaxis prevention coverage
ε∗ that would be required to contain malaria can be calculated.
The case β1 = β2 gives

RvRh = R0 (1 − εβ)

where β = μψ
μ+θ , R0 = RvR1.

Here R0 = RvR1 is the basic reproduction number, i.e the
number of new infection cases that result from a single case
of an infection in a population that is wholly susceptible when
no intervention is in place. We note that β is the impact or
efficacy of the vaccine and for the human population, the
critical prophylaxis prevention coverage, ε∗ is given by

ε∗ =
1
β

(
1 − 1

R0

)
. (6)

For the case where β1 �= β2, the critical prophylaxis prevention
coverage is given by

ε∗ =
μ+ θ

μ

(
1 −R0

(1 − ψ)Rm −R0

)
(7)

where Rm = RvR2. The expression (7) collapses to (6) for
β1 = β2.

To investigate the impact of taking prophylactic vaccines on
the permanence of the malaria infection, we consider a limiting
case ψ → 1. We note that

lim
ψ→1

RhRv = (1 − φ)R0.

We also note that,
∂Rh

∂ψ
< 0.

This means that Rh is a decreasing function of ψ and con-
sequently as ψ increases, R decrease. This means that as the
protection against malaria improves, the number of secondary

infections decreases. In developing countries, governments
and non-governmental organisations have been distributing
chemically treated mosquito nets in order to increase the level
of protection.

In the absence of intervention i.e when φ = 0, we have
RhRv = R0. A comparison of RhRv and R0 results in the
following lemma;

Lemma 1: R0 > RvRh whenever ψ∗ >
(
1 − β2

β1

)
.

We omit the proof of the proposition, which can easily be
established.

Remark: ψ∗ is thus a threshold parameter, because for in-
tervention to have an impact on the control of malaria, ψ
must exceed the ratio β1−β2

β1
. This ratio is important to public

health intervention programs. It sets the minimum value for
the degree of protection that a therapy should achieve for an
intervention to be effective. We shall now assume that this
condition is satisfied in our analysis of the equilibrium point.

B. Disease free equilibrium point
From equations (2), (3) and (5), the equilibrium points must

satisfy the following relations in terms of i:

iv =
Rvi

1 +Rvi
(8)

v = φ
1 +Rvi

1 + URvi
(9)

s =
(α1 + α2i+ α3i

2)(1 +Rvi)
(σ + μ)(1 + URvi)(1 + T Rvi)

(10)

where U = 1+ (1−ψ)β2
μ+θ , T = 1+ β1

μ+σ and α1 = (μ+σ)(1−
φ),
α2 = (μ+σ)(1−φ)Rv + π(1−ψ)β2

(μ+θ) Rv−σ and α3 = −σURv.

Substituting equations (8), (9) and (10) into (4) and equating
to zero, we get i = 0 and the quadratic equation

F (i) = Ai2 +Bi+ C = 0, (11)

where

A = −R2
vU [β1(μ+ γ + σ) + (μ+ γ)(μ+ σ)],

B = Rv

[
C + UA+

(μ+ γ)(μ+ σ)
μ+ θ

(1 − ψ)β2 (R0 − 1)
]
,

C = (μ+ γ)(μ+ σ)(R− 1).

Taking i = 0 and substituting into (8), (9) and (10) gives the
disease free equilibrium point

E0 = (1 − φ, φ, 0, 0).

The case i �= 0 is considered in the next section .
Theorem 1: If R < 1, then the DFE point, E0 is locally

asymptotically stable in Ω, and unstable for R > 1.
Proof: The Jacobian of system (2) - (5) at E0 has two

eigenvalues l1 = −(μ+σ), l2 = −(μ+ θ) and the other two
have negative real parts if and only if R < 1. Thus the DFE
point is locally asymptotically stable if R < 1 and unstable if
R > 1.
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C. The endemic equilibria

A solution i, of (11) corresponds to an endemic equilibrium
solution. From (11) it is easy to observe that A < 0,

C

{
< 0 if R < 1

> 0 if R > 1
and B < 0 if R < 1, R0 < 1.

Equation (11) has multiple solutions that depend on the
parameter values chosen. So, the model has multiple equilibria
of coexistence. We draw the following results on the existence
of multiple endemic equilibria:

Theorem 2: (a) System (2) - (5) has only one positive
equilibrium point if R > 1.

(b) If R < 1 and B > 0 then system (2) - (5) has two
positive equilibrium solutions.

(c) If R < 1 and R0 < 1, then no positive equilibria exist
for system (2) - (5).

Result (b) of the above theorem, suggests the coexistence of
the endemic equilibrium point and the disease free equilibrium
point, a phenomena known as backward bifurcation.

For ψ = 1, we note that U = 1, α2 = (μ+σ)(1−φ)Rv −
σ, α3 = −σRv and Rh = (1− φ)R1 = �. The system has a
unique stable endemic equilibrium whenever � > 1 given by,
E1(s∗, v∗, i∗, I∗v ), where

v∗ = φ

i∗ = η(�− 1),

for η =
(μ+ γ)(μ+ σ)

Rv[(μ+ γ)(μ+ σ) + β1(μ+ σ + γ)]
,

i∗v =
Rvi

∗

1 +Rvi∗

s∗ =
(μ+ σ)(1 − φ) − σi∗

μ+ σ + β1i∗v.

IV. NUMERICAL RESULTS

In the previous section, the qualitative analysis of the model
is presented. The conditions for local and global stability are
presented. We now consider numerical results for the model
using Matlab and Mathematica.

Malaria is a major cause of mortality if Southern Africa
and the burden is greatest among children under the age of
five years and pregnant women [3]. Between 10 million and
37 million confirmed cases of malaria occur annually. It is
estimated that up to 200 000 malaria deaths occur annually
in Southern Africa, with the following estimated percentage
distributions in Table I [5].

Country % distribution Country % distribution
Angola 16.4 South Africa 0.2
Botswana 0.1 Swaziland 0.1
Malawi 14.7 Tanzania 32.1
Mozambique 22.3 Zambia 9.3
Namibia 0.1 Zimbabwe 4.6

TABLE I
ESTIMATED DISTRIBUTION OF MALARIA DEATHS IN SOUTHERN AFRICA.

In Southern Africa the human life span is taken to be 14 600
days (40 years) so that μ = 0.025 [17]. The vectors life span

is taken to be 2 − 3 weeks giving 0.04 ≤ ν ≤ 0.06 years
[18]. These values represent the natural death rate of the
mosquitoes. It is however apparent that in reality ν is higher
that these values and difficult to measure. For the purpose of
these simulations we shall consider ν ≥ 0.06. The incidence
of confirmed malaria cases is between 73 and 266 per 1000
individuals per annum. The death rate due to malaria can
be calculated to be 0.0014 [5]. The period of prophylaxis
prevention is estimated to be 15-37 days and the duration
of protection of temporary immunity is estimated to be 28
days [19]. It is important to note that many of the model
parameters are difficult to estimate but indirect parameter
estimates can be obtained from the estimates of the quantities
that are measured directly. For example, the rate of recovery
of infected individuals can be obtained from the confirmed
malaria cases and the estimates of deaths. The rate of recovery
per annum γ is thus calculated to be approximately 0.98.
The effective contact rate of humans to vectors is 0.375 and
from vectors to humans is 0.75 [20]. Some authors assume
a transmission rate from humans to vectors of about 0.4167
[14]. The parameter values for the model are listed in Table
II.

Parameter Approx. values/year Parameter Approx. values/year
ε 0 < ε < 1 μ 0.0264
ψ 0 ≤ ψ ≤ 1 γ 0.98
β1 β1 > 0.375 θ 0.04 ≤ θ ≤ 0.1
β2 β2 < 0.3 ν ν ≥ 0.06
β3 0.75 σ 0.08

TABLE II
PARAMETER VALUES

The following initial conditions are assumed for the propor-
tions; s(0) = 0.6, v(0) = 0.2, i(0) = 0.1 and z(0) = 0.1
in our simulations. Simulations were run for different sets of
initial conditions and the qualitative form of the solutions were
similar.
We begin by looking at the prevalence curve for the human
population for the parameter values given in the caption of
Figure 1. In this case the vector population plays an important
role in the overall disease transmission as seen from the value
of the reproduction number Rv. A decrease in the contribution
of the vector to the overall transmission of malaria leads to
a decrease in the prevalence of malaria. The implications
of a declining prevalence are related to the eradication of
malaria. The waning duration of a prophylaxis is of great
importance in disease prevention. If it is short, then the desired
results are likely not to be achieved. If the it is long then
individuals are assured of protection for longer periods. Below
is a graph showing the corresponding long tern evolution
of the prevalence curves for changing values of θ. We note
that increasing the values of θ leads to an increase in the
reproduction number. For the given values of θ it the table,
increasing θ implies reduced duration of protection.
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Fig. 1. The evolution of prevalence for the human population over time for
the following parameter values, π = 0.2, μ = 0.0264, σ = 0.08, θ =
0.06, ε = 0.2, ψ = 0.5, γ = 0.98, β1 = 0.46, β2 = 0.2, β3 = 0.75
and Rh = 0.4352.
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θ=0.04, R=0.8965, R
h
=0.4286,

θ=0.08, R=0.9105, R
h
=0.4421

θ=0.1, R=0.9076, R
h
=0.4393

Fig. 2. The evolution of prevalence for the human population over time for
the following parameter values, π = 0.2, μ = 0.0264, σ = 0.08, ν =
0.4, ε = 0.2, ψ = 0.5, γ = 0.98, β1 = 0.46, β2 = 0.2, β3 = 0.75 and
Rv = 1.8750.

We noted that
∂Rh

∂ψ
< 0. Consequently, as ψ increases R

decreases. The result is supported numerically by the graph
below.

V. CONCLUSION

Presented in this paper is the influence of prophylaxis
prevention in the spread of malaria. prophylaxis prevention is
meant to reduce susceptibility to infection and like vaccines,
it is characterized by two important parameters given in
the model: the the degree of protection ψ and the waning
period θ. The model presented in this paper is perhaps
the simplest caricature possible of a prophylaxis prevention

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.958

0.96

0.962

0.964

0.966

0.968

0.97

0.972

0.974

0.976

ψ

R

Fig. 3. The relationship between ψ and the reproduction number R for
the following parameter values, π = 0.2, μ = 0.0264, σ = 0.08, θ =
0.06, ε = 0.2, γ = 0.98, β1 = 0.46, β2 = 0.2, β3 = 0.75, ν = 0.35

program applied to a general population. The results show
that prophylaxis are capable of reducing malaria epidemics if
issues related to drug/pesticides resistance are seriously taken
into consideration. Models that look into the issues of drug
resistance were considered in [21].

The model analysis included the determination of equilibrium
points and carrying out their stability analysis in terms of the
preventive therapy reproduction number R. We note that R is
a product of two terms Rv and Rh. From the expression

R = (1 − φ)R0 + (1 − ψ)φRm,

φ is the probability that an individual is successfully protected
by chemoprevention, R0 is the mean number of secondary
cases of malaria produced by a single case of infection in a
population that is wholly susceptible with no chemoprevention
intervention in place. Rm is the mean number of secondary
cases of malaria that are produced by an individual who is
successfully protected by prophylaxis preventionand becomes
infected during his or her life time.

This work can provide insights into several aspects of the
malaria control. It is important to acknowledge that the
dynamics of malaria transmission are not simple. Malaria
transmission in Southern Africa has been affected by fund-
ing and service delivery, political instability (the cases of
Mozambique, Angola and the Democratic Republic of Congo),
poverty, drug and insecticide resistance. The evolution of these
biological and social systems is complex, making it impossible
for mathematical models to provide accurate predictions of the
disease dynamics. They can however be used to forecast, but
only in fairly gross terms. Modelling should be an integral part
of any disease control program and the model system should
be easy to use and can beadapted to new results and changes
in control policies [22].

Vector control plays a central role in the control of malaria.
Problems specific to vector control are insecticide resistance,
species identification and control strategy choices. Overall,
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mathematical models can assist in determining control strate-
gies with large impacts on outcomes and can provide com-
prehensive evaluation of model assumptions that influence
decisions.
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